Steampunk Machine Learning

Q3 Computer Science Queue Pub Date : 2021-12-31 DOI:10.1145/3511543
T. Kelly
{"title":"Steampunk Machine Learning","authors":"T. Kelly","doi":"10.1145/3511543","DOIUrl":null,"url":null,"abstract":"Fitting models to data is all the rage nowadays but has long been an essential skill of engineers. Veterans know that real-world systems foil textbook techniques by interleaving routine operating conditions with bouts of overload and failure; to be practical, a method must model the former without distortion by the latter. Surprisingly effective aid comes from an unlikely quarter: a simple and intuitive model-fitting approach that predates the Babbage Engine. The foundation of industrial-strength decision support and anomaly detection for production datacenters, this approach yields accurate yet intelligible models without hand-holding or fuss. It is easy to practice with modern analytics software and is widely applicable to computing systems and beyond.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"19 1","pages":"5 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Fitting models to data is all the rage nowadays but has long been an essential skill of engineers. Veterans know that real-world systems foil textbook techniques by interleaving routine operating conditions with bouts of overload and failure; to be practical, a method must model the former without distortion by the latter. Surprisingly effective aid comes from an unlikely quarter: a simple and intuitive model-fitting approach that predates the Babbage Engine. The foundation of industrial-strength decision support and anomaly detection for production datacenters, this approach yields accurate yet intelligible models without hand-holding or fuss. It is easy to practice with modern analytics software and is widely applicable to computing systems and beyond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸汽朋克机器学习
将模型与数据拟合在当今风靡一时,但长期以来一直是工程师的基本技能。退伍军人知道,现实世界中的系统通过将常规操作条件与过载和故障交织在一起,来挫败教科书中的技术;为了实用,一种方法必须对前者进行建模,而不受后者的扭曲。令人惊讶的是,有效的援助来自一个不太可能的方面:一种简单直观的模型拟合方法,早于巴贝奇发动机。作为生产数据中心工业强度决策支持和异常检测的基础,这种方法无需手动或大惊小怪即可生成准确易懂的模型。它易于使用现代分析软件进行实践,并广泛适用于计算系统及其他系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Queue
Queue Computer Science-Computer Science (all)
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Free and Open Source Software - and Other Market Failures Challenges in Adopting and Sustaining Microservice-based Software Development Give Your Project a Name A "Perspectival" Mirror of the Elephant Developer Ecosystems for Software Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1