Identification of Earth’s surface objects using ensembles of convolutional neural networks.

E. E. Marushko, A. Doudkin, Xiangtao Zheng
{"title":"Identification of Earth’s surface objects using ensembles of convolutional neural networks.","authors":"E. E. Marushko, A. Doudkin, Xiangtao Zheng","doi":"10.33581/2520-6508-2021-2-114-123","DOIUrl":null,"url":null,"abstract":"The paper proposes an identification technique of objects on the Earth’s surface images based on combination of machine learning methods. Different variants of multi-layer convolutional neural networks and support vector machines are considered as original models. A hybrid convolutional neural network that combines features extracted by the neural network and experts is proposed. Optimal values of hyperparameters of the models are calculated by grid search methods using k-fold cross-validation. The possibility of improving the accuracy of identification based on the ensembles of these models is shown. Effectiveness of the proposed technique is demonstrated by the example of images obtained by synthetic aperture radar.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2021-2-114-123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The paper proposes an identification technique of objects on the Earth’s surface images based on combination of machine learning methods. Different variants of multi-layer convolutional neural networks and support vector machines are considered as original models. A hybrid convolutional neural network that combines features extracted by the neural network and experts is proposed. Optimal values of hyperparameters of the models are calculated by grid search methods using k-fold cross-validation. The possibility of improving the accuracy of identification based on the ensembles of these models is shown. Effectiveness of the proposed technique is demonstrated by the example of images obtained by synthetic aperture radar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络集合识别地球表面物体。
提出了一种基于机器学习方法相结合的地球表面图像目标识别技术。多层卷积神经网络和支持向量机的不同变体被认为是原始模型。提出了一种将神经网络提取的特征与专家特征相结合的混合卷积神经网络。采用k-fold交叉验证的网格搜索方法计算模型超参数的最优值。在此基础上,提出了利用这些模型的集合来提高识别精度的可能性。以合成孔径雷达图像为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
期刊最新文献
Algorithm for solving the knapsack problem with certain properties of Pareto layers Numerical study of the relative equilibrium of a droplet with a simply connected free surface on a rotating plane On the Hosoya polynomial of the third type of the chain hex-derived network Algebraic equations and polynomials over the ring of p-complex numbers On the theory of operator interpolation in spaces of rectangular matrixes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1