Effect of pre-chlorination on Microcystis aeruginosa cell integrity and microcystins removal

IF 1.6 3区 环境科学与生态学 Q3 WATER RESOURCES Urban Water Journal Pub Date : 2023-05-30 DOI:10.1080/1573062X.2023.2218347
Alexander Ossanes de Souza, Kazumi Kinoshita Teramoto, Paloma Nathane Nunes de Freitas, Éryka Costa de Almeida, Sidney Seckler Ferreira Filho, E. Pinto
{"title":"Effect of pre-chlorination on Microcystis aeruginosa cell integrity and microcystins removal","authors":"Alexander Ossanes de Souza, Kazumi Kinoshita Teramoto, Paloma Nathane Nunes de Freitas, Éryka Costa de Almeida, Sidney Seckler Ferreira Filho, E. Pinto","doi":"10.1080/1573062X.2023.2218347","DOIUrl":null,"url":null,"abstract":"ABSTRACT High nutrient input into waterbodies increases potentially toxic cyanobacteria blooms. Pre-chlorination treatment is excellent for cyanobacterial cell inactivation and dissolved cyanotoxins removal in water supply sources. This study aims to evaluate the pre-chlorination effect treatment on Microcystis aeruginosa cell integrity and its hepatotoxins (microcystins, MC) release and degradation on a laboratory scale. Loss of cell integrity is observed with increasing chlorine concentration. The maximum cell permeability without cell disintegration occurs at 2.5 mg Cl2 L−1. Degradations up to 70% and chlorophyll-a reductions over 70% are observed after 60 min exposure, with complete degradation at 2.5 and 3 mg Cl2 L−1. However, chlorine (Cl2) exposure over 40.66 mg min L−1 is required for microcystins MC-LR (i.e. radicals: leucine (L) and arginine (R)) and MC-RR (i.e. radicals: arginine and arginine) oxidation oxidation to concentrations below the legislation value for water potability.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"968 - 978"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2218347","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT High nutrient input into waterbodies increases potentially toxic cyanobacteria blooms. Pre-chlorination treatment is excellent for cyanobacterial cell inactivation and dissolved cyanotoxins removal in water supply sources. This study aims to evaluate the pre-chlorination effect treatment on Microcystis aeruginosa cell integrity and its hepatotoxins (microcystins, MC) release and degradation on a laboratory scale. Loss of cell integrity is observed with increasing chlorine concentration. The maximum cell permeability without cell disintegration occurs at 2.5 mg Cl2 L−1. Degradations up to 70% and chlorophyll-a reductions over 70% are observed after 60 min exposure, with complete degradation at 2.5 and 3 mg Cl2 L−1. However, chlorine (Cl2) exposure over 40.66 mg min L−1 is required for microcystins MC-LR (i.e. radicals: leucine (L) and arginine (R)) and MC-RR (i.e. radicals: arginine and arginine) oxidation oxidation to concentrations below the legislation value for water potability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预氯化对铜绿微囊藻细胞完整性及微囊藻毒素去除的影响
高营养输入水体增加潜在的有毒蓝藻华。预氯化处理是极好的蓝藻细胞灭活和溶解的蓝藻毒素去除在供水来源。本研究旨在评价预氯化处理对铜绿微囊藻细胞完整性及其肝毒素(微囊藻毒素、MC)释放和降解的影响。随着氯浓度的增加,观察到细胞完整性的丧失。在2.5 mg Cl2 L−1时,细胞通透性达到最大值而不发生细胞解体。暴露60分钟后,观察到降解高达70%,叶绿素-a减少超过70%,在2.5和3 mg Cl2 L−1下完全降解。然而,微囊藻毒素MC-LR(即自由基:亮氨酸(L)和精氨酸(R))和MC-RR(即自由基:精氨酸和精氨酸)的氧化需要超过40.66 mg min L−1的氯(Cl2)暴露至低于饮用水立法值的浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Urban Water Journal
Urban Water Journal WATER RESOURCES-
CiteScore
4.40
自引率
11.10%
发文量
101
审稿时长
3 months
期刊介绍: Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management. Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include: network design, optimisation, management, operation and rehabilitation; novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system; demand management and water efficiency, water recycling and source control; stormwater management, urban flood risk quantification and management; monitoring, utilisation and management of urban water bodies including groundwater; water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure); resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing; data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems; decision-support and informatic tools;...
期刊最新文献
A fuzzy group decision-making model for Water Distribution Network rehabilitation Analysis of combined probability and nonprobability samples: A simulation evaluation and application to a teen smoking behavior survey. Environmental contamination by heavy metals and assessing the impact of inhabitant microalgae in bioremediation: a case study of urban water of Yamuna River, India Assessment of the impact of the rise in Lake Victoria water levels on urban flooding using a GIS-based spatial flood modelling approach Indicator-based resilience assessment of stormwater infrastructure network structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1