Application of minimum description length criterion to assess the complexity of models in mathematical immunology

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Russian Journal of Numerical Analysis and Mathematical Modelling Pub Date : 2022-11-01 DOI:10.1515/rnam-2022-0022
D. Grebennikov, V. V. Zheltkova, G. Bocharov
{"title":"Application of minimum description length criterion to assess the complexity of models in mathematical immunology","authors":"D. Grebennikov, V. V. Zheltkova, G. Bocharov","doi":"10.1515/rnam-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract Mathematical models in immunology differ enormously in the dimensionality of the state space, the number of parameters and the parameterizations used to describe the immune processes. The ongoing diversification of the models needs to be complemented by rigorous ways to evaluate their complexity and select the parsimonious ones in relation to the data available/used for their calibration. A broadly applied metrics for ranking the models in mathematical immunology with respect to their complexity/parsimony is provided by the Akaike information criterion. In the present study, a computational framework is elaborated to characterize the complexity of mathematical models in immunology using a more general approach, namely, the Minimum Description Length criterion. It balances the model goodness-of-fit with the dimensionality and geometrical complexity of the model. Four representative models of the immune response to acute viral infection formulated with either ordinary or delay differential equations are studied. Essential numerical details enabling the assessment and ranking of the viral infection models include: (1) the optimization of the likelihood function, (2) the computation of the model sensitivity functions, (3) the evaluation of the Fisher information matrix and (4) the estimation of multidimensional integrals over the model parameter space.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"37 1","pages":"253 - 261"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Mathematical models in immunology differ enormously in the dimensionality of the state space, the number of parameters and the parameterizations used to describe the immune processes. The ongoing diversification of the models needs to be complemented by rigorous ways to evaluate their complexity and select the parsimonious ones in relation to the data available/used for their calibration. A broadly applied metrics for ranking the models in mathematical immunology with respect to their complexity/parsimony is provided by the Akaike information criterion. In the present study, a computational framework is elaborated to characterize the complexity of mathematical models in immunology using a more general approach, namely, the Minimum Description Length criterion. It balances the model goodness-of-fit with the dimensionality and geometrical complexity of the model. Four representative models of the immune response to acute viral infection formulated with either ordinary or delay differential equations are studied. Essential numerical details enabling the assessment and ranking of the viral infection models include: (1) the optimization of the likelihood function, (2) the computation of the model sensitivity functions, (3) the evaluation of the Fisher information matrix and (4) the estimation of multidimensional integrals over the model parameter space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小描述长度准则在数学免疫学模型复杂性评价中的应用
免疫学中的数学模型在状态空间的维数、参数的数量和用于描述免疫过程的参数化方面存在很大差异。模型的不断多样化需要辅以严格的方法来评估其复杂性,并根据可获得/用于其校准的数据选择最简洁的模型。Akaike信息标准提供了一种广泛应用的数学免疫学模型复杂性/简约性排名指标。在本研究中,阐述了一个计算框架,使用更一般的方法来表征免疫学数学模型的复杂性,即最小描述长度标准。它平衡了模型的拟合优度与模型的维数和几何复杂性。研究了用常微分方程或时滞微分方程表述的急性病毒感染免疫反应的四个代表性模型。对病毒感染模型进行评估和排序的关键数值细节包括:(1)似然函数的优化;(2)模型灵敏度函数的计算;(3)Fisher信息矩阵的评估;(4)模型参数空间上多维积分的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
期刊最新文献
Nitrogen cycle module for INM RAS climate model Evaluation of 2010 heatwave prediction skill by SLNE coupled model Numerical solution of optimal control problems for linear systems of ordinary differential equations Two-phase flow simulation algorithm for numerical estimation of relative phase permeability curves of porous materials On the accuracy of shock-capturing schemes when calculating Cauchy problems with periodic discontinuous initial data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1