Silvia Mariani, M. D. De Piero, Justine M. Ravaux, Alexander Saelmans, Michal J Kawczynski, B. V. van Bussel, Michele Di Mauro, A. Willers, J. Swol, M. Kowalewski, Tong Li, T. Delnoij, I. V. D. van der Horst, Jos Maessen, R. Lorusso
{"title":"LKB1 suppression promotes cardiomyocyte regeneration via LKB1-AMPK-YAP axis","authors":"Silvia Mariani, M. D. De Piero, Justine M. Ravaux, Alexander Saelmans, Michal J Kawczynski, B. V. van Bussel, Michele Di Mauro, A. Willers, J. Swol, M. Kowalewski, Tong Li, T. Delnoij, I. V. D. van der Horst, Jos Maessen, R. Lorusso","doi":"10.17305/bjbms.2021.7225","DOIUrl":null,"url":null,"abstract":"The regenerative potential of cardiomyocytes in adult mammals is limited. The previous studies reported that cardiomyocyte proliferation is suppressed by AMP-activated protein kinase (AMPK). The role of liver kinase B1 (LKB1), as the major upstream kinase for AMPK, on cardiomyocyte proliferation is unclear. In this study, we found that the LKB1 levels rapidly increased after birth. With loss- and gain-of-function study, our data demonstrated that LKB1 levels negatively correlate with cardiomyocyte proliferation. We next identified Yes-associated protein (YAP) as the downstream effector of LKB1 using high-throughput RNA sequencing. Our results also demonstrated that AMPK plays an essential role in Lkb1 knockdown-induced cardiomyocyte proliferation. Importantly, deactivated AMPK abolished the LKB1-mediated regulation of YAP nuclear translocation and cardiomyocyte proliferation. Thus, our findings suggested the role of LKB1-AMPK-YAP axis during cardiomyocyte proliferation, which could be used as a potential target for inducing cardiac regeneration after injury.","PeriodicalId":9147,"journal":{"name":"Bosnian journal of basic medical sciences","volume":"22 1","pages":"772 - 783"},"PeriodicalIF":3.1000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bosnian journal of basic medical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17305/bjbms.2021.7225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 20
Abstract
The regenerative potential of cardiomyocytes in adult mammals is limited. The previous studies reported that cardiomyocyte proliferation is suppressed by AMP-activated protein kinase (AMPK). The role of liver kinase B1 (LKB1), as the major upstream kinase for AMPK, on cardiomyocyte proliferation is unclear. In this study, we found that the LKB1 levels rapidly increased after birth. With loss- and gain-of-function study, our data demonstrated that LKB1 levels negatively correlate with cardiomyocyte proliferation. We next identified Yes-associated protein (YAP) as the downstream effector of LKB1 using high-throughput RNA sequencing. Our results also demonstrated that AMPK plays an essential role in Lkb1 knockdown-induced cardiomyocyte proliferation. Importantly, deactivated AMPK abolished the LKB1-mediated regulation of YAP nuclear translocation and cardiomyocyte proliferation. Thus, our findings suggested the role of LKB1-AMPK-YAP axis during cardiomyocyte proliferation, which could be used as a potential target for inducing cardiac regeneration after injury.
期刊介绍:
The Bosnian Journal of Basic Medical Sciences (BJBMS) is an international, English-language, peer reviewed journal, publishing original articles from different disciplines of basic medical sciences. BJBMS welcomes original research and comprehensive reviews as well as short research communications in the field of biochemistry, genetics, immunology, microbiology, pathology, pharmacology, pharmaceutical sciences and physiology.