Hemocompatibility And Cytotoxicity Of Small-Diameter Bioabsorbable Tissue-Engineered Vascular Grafts Depending On Anti-Thrombogenic And Antimicrobial Coating
Eugenia O. Krivkina, E. Velikanova, E. A. Senokosova, M. Khanova, T. V. Glushkova, L. Antonova, L. Barbarash
{"title":"Hemocompatibility And Cytotoxicity Of Small-Diameter Bioabsorbable Tissue-Engineered Vascular Grafts Depending On Anti-Thrombogenic And Antimicrobial Coating","authors":"Eugenia O. Krivkina, E. Velikanova, E. A. Senokosova, M. Khanova, T. V. Glushkova, L. Antonova, L. Barbarash","doi":"10.15275/rusomj.2021.0423","DOIUrl":null,"url":null,"abstract":"Anti-thrombogenic and antimicrobial coatings of polymer grafts constitute a promising approach to preventing infection and thrombosis of vascular grafts. The objective was to study the hemocompatibility and cytotoxicity of PHBV/PCL grafts with iloprost and amphiphilic coating. Material and Methods — Polymer matrices were manufactured by electrospinning a mixture of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) polymers. Several matrices were modified by complexation between polyvinylpyrrolidone (PVP) and cationic amphiphile and/or iloprost. The amphiphile was covalently cross-linked to the surface of other PHBV/PCL matrices. Unmodified PHBV/PCL matrices were used as the control group. Hemocompatibility and cytotoxicity of scaffolds before and after the modification were evaluated. Results — The hemocompatibility assessment revealed that hemolysis degree did not exceed normal values in all types of matrices. The PHBV/PCL/PVP matrices had increased platelet aggregation on the surface of the grafts. Subsequent addition of iloprost and amphiphile resulted in a sevenfold reduction of platelet aggregation. In PHBV/PCL/PVP matrices, the degree of platelet adhesion increased without changing the platelet deformation index values. Iloprost and amphiphilic coating of PHBV/PCL/PVP matrices diminished the number of adhered platelets and platelet deformation index by 1.5 times. The amphiphile, covalently cross-linked to PHBV/PCL matrices, caused a negative effect on the platelet adhesion, aggregation, and deformation index values. Evaluation of cytotoxicity of PHBV/PCL/PVP matrices, coated with iloprost and/or cationic amphiphile, demonstrated a slight decline in the rates of cell growth and proliferation after three days. Moreover, after three days, cell deaths and a sharp drop in the cell index values were noted in PHBV/PCL matrices with covalently cross-linked amphiphile. Conclusion — Iloprost and amphiphilic coating of PHBV/PCL grafts has increased their hemocompatibility. Also, there were no signs of cytotoxicity while using the complexation technique. However, covalently cross-linked amphiphile caused an increase in the cytotoxicity of matrices, which may have been indicative of the negative effect observed in this type of surface modification.","PeriodicalId":21426,"journal":{"name":"Russian Open Medical Journal","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Open Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15275/rusomj.2021.0423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-thrombogenic and antimicrobial coatings of polymer grafts constitute a promising approach to preventing infection and thrombosis of vascular grafts. The objective was to study the hemocompatibility and cytotoxicity of PHBV/PCL grafts with iloprost and amphiphilic coating. Material and Methods — Polymer matrices were manufactured by electrospinning a mixture of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) polymers. Several matrices were modified by complexation between polyvinylpyrrolidone (PVP) and cationic amphiphile and/or iloprost. The amphiphile was covalently cross-linked to the surface of other PHBV/PCL matrices. Unmodified PHBV/PCL matrices were used as the control group. Hemocompatibility and cytotoxicity of scaffolds before and after the modification were evaluated. Results — The hemocompatibility assessment revealed that hemolysis degree did not exceed normal values in all types of matrices. The PHBV/PCL/PVP matrices had increased platelet aggregation on the surface of the grafts. Subsequent addition of iloprost and amphiphile resulted in a sevenfold reduction of platelet aggregation. In PHBV/PCL/PVP matrices, the degree of platelet adhesion increased without changing the platelet deformation index values. Iloprost and amphiphilic coating of PHBV/PCL/PVP matrices diminished the number of adhered platelets and platelet deformation index by 1.5 times. The amphiphile, covalently cross-linked to PHBV/PCL matrices, caused a negative effect on the platelet adhesion, aggregation, and deformation index values. Evaluation of cytotoxicity of PHBV/PCL/PVP matrices, coated with iloprost and/or cationic amphiphile, demonstrated a slight decline in the rates of cell growth and proliferation after three days. Moreover, after three days, cell deaths and a sharp drop in the cell index values were noted in PHBV/PCL matrices with covalently cross-linked amphiphile. Conclusion — Iloprost and amphiphilic coating of PHBV/PCL grafts has increased their hemocompatibility. Also, there were no signs of cytotoxicity while using the complexation technique. However, covalently cross-linked amphiphile caused an increase in the cytotoxicity of matrices, which may have been indicative of the negative effect observed in this type of surface modification.
期刊介绍:
Russian Open Medical Journal (RusOMJ) (ISSN 2304-3415) is an international peer reviewed open access e-journal. The website is updated quarterly with the RusOMJ’s latest original research, clinical studies, case reports, reviews, news, and comment articles. This Journal devoted to all field of medicine. All the RusOMJ’s articles are published in full on www.romj.org with open access and no limits on word counts. Our mission is to lead the debate on health and to engage, inform, and stimulate doctors, researchers, and other health professionals in ways that will improve outcomes for patients. The RusOMJ team is based mainly in Saratov (Russia), although we also have editors elsewhere in Russian and in other countries.