Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture

IF 2.6 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Interactions Pub Date : 2023-08-07 DOI:10.1080/17429145.2023.2242697
Cécile Renaud, N. Leys, R. Wattiez
{"title":"Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture","authors":"Cécile Renaud, N. Leys, R. Wattiez","doi":"10.1080/17429145.2023.2242697","DOIUrl":null,"url":null,"abstract":"ABSTRACT The space environment is extreme for plants growth and survival as gravity (gravitropism modification, water distribution), radiations (mutations enhancers), light spectrum regime and temperature are not optimal. Photosynthetic microorganisms are a foreseen solution for supporting plant development, growth, and stress tolerance in closed environments, like those designed for space colonisation. Indeed, photosynthetic microorganisms are known as secondary metabolites producers (exopolysaccharides, indole alkaloids, fertilisers) able to impact plant stimulation. Studying their abilities, application methodologies and best strains for space agriculture may lead to developing a sustainable and efficient approach for food production. Furthermore, as these microorganisms could also be used to produce oxygen and recycle waste materials increasing their interest in closed loop systems is undeniable. In this review we provide an overview of the current state of knowledge about existing biostimulants, their effects and applications, and the potential brought by photosynthetic microorganisms for life in closed environments. Highlights Cyanobacteria's and microalgae's secondary metabolites can act as biostimulants for vascular plants when applied to the roots or the leaves. Production of secondary metabolites in cyanobacteria can be enhanced in stressful environments. Cyanobacteria can survive space-like stress by sur-producing secondary metabolites giving an advantage for space farming as a source of biostimulant compounds.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2023.2242697","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The space environment is extreme for plants growth and survival as gravity (gravitropism modification, water distribution), radiations (mutations enhancers), light spectrum regime and temperature are not optimal. Photosynthetic microorganisms are a foreseen solution for supporting plant development, growth, and stress tolerance in closed environments, like those designed for space colonisation. Indeed, photosynthetic microorganisms are known as secondary metabolites producers (exopolysaccharides, indole alkaloids, fertilisers) able to impact plant stimulation. Studying their abilities, application methodologies and best strains for space agriculture may lead to developing a sustainable and efficient approach for food production. Furthermore, as these microorganisms could also be used to produce oxygen and recycle waste materials increasing their interest in closed loop systems is undeniable. In this review we provide an overview of the current state of knowledge about existing biostimulants, their effects and applications, and the potential brought by photosynthetic microorganisms for life in closed environments. Highlights Cyanobacteria's and microalgae's secondary metabolites can act as biostimulants for vascular plants when applied to the roots or the leaves. Production of secondary metabolites in cyanobacteria can be enhanced in stressful environments. Cyanobacteria can survive space-like stress by sur-producing secondary metabolites giving an advantage for space farming as a source of biostimulant compounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光合微生物,概述其对植物的生物刺激素作用及其对空间农业的展望
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
期刊最新文献
Transcriptome analysis of maize resistance to Fusarium verticillioides Biochar modulates the antioxidant system and hormonal signaling in tobacco under continuous-cropping conditions Clarifying the effects of potential evapotranspiration and soil moisture on transpiration in secondary forests of birch in semi-arid regions of China The effect of nitrogen reduction combined with biochar application on the photosynthetic function of tobacco leaves Physiological and transcriptomic profiles of tobacco seedling leaves in response to high chloride accumulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1