Felipe Cujar-Rosero, David Santiago Pinchao Ortiz, Silvio Ricardo Timarán Pereira, J. Restrepo
{"title":"Nature: A Tool Resulting from the Union of Artificial Intelligence and Natural Language Processing for Searching Research Projects in Colombia","authors":"Felipe Cujar-Rosero, David Santiago Pinchao Ortiz, Silvio Ricardo Timarán Pereira, J. Restrepo","doi":"10.5121/ijaia.2021.12401","DOIUrl":null,"url":null,"abstract":"This paper presents the final results of the research project that aimed for the construction of a tool which is aided by Artificial Intelligence through an Ontology with a model trained with Machine Learning, and is aided by Natural Language Processing to support the semantic search of research projects of the Research System of the University of Nariño. For the construction of NATURE, as this tool is called, a methodology was used that includes the following stages: appropriation of knowledge, installation and configuration of tools, libraries and technologies, collection, extraction and preparation of research projects, design and development of the tool. The main results of the work were three: a) the complete construction of the Ontology with classes, object properties (predicates), data properties (attributes) and individuals (instances) in Protegé, SPARQL queries with Apache Jena Fuseki and the respective coding with Owlready2 using Jupyter Notebook with Python within the virtual environment of anaconda; b) the successful training of the model for which Machine Learning algorithms were used and specifically Natural Language Processing algorithms such as: SpaCy, NLTK, Word2vec and Doc2vec, this was also performed in Jupyter Notebook with Python within the virtual environment of anaconda and with Elasticsearch; and c) the creation of NATURE by managing and unifying the queries for the Ontology and for the Machine Learning model. The tests showed that NATURE was successful in all the searches that were performed as its results were satisfactory.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2021.12401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the final results of the research project that aimed for the construction of a tool which is aided by Artificial Intelligence through an Ontology with a model trained with Machine Learning, and is aided by Natural Language Processing to support the semantic search of research projects of the Research System of the University of Nariño. For the construction of NATURE, as this tool is called, a methodology was used that includes the following stages: appropriation of knowledge, installation and configuration of tools, libraries and technologies, collection, extraction and preparation of research projects, design and development of the tool. The main results of the work were three: a) the complete construction of the Ontology with classes, object properties (predicates), data properties (attributes) and individuals (instances) in Protegé, SPARQL queries with Apache Jena Fuseki and the respective coding with Owlready2 using Jupyter Notebook with Python within the virtual environment of anaconda; b) the successful training of the model for which Machine Learning algorithms were used and specifically Natural Language Processing algorithms such as: SpaCy, NLTK, Word2vec and Doc2vec, this was also performed in Jupyter Notebook with Python within the virtual environment of anaconda and with Elasticsearch; and c) the creation of NATURE by managing and unifying the queries for the Ontology and for the Machine Learning model. The tests showed that NATURE was successful in all the searches that were performed as its results were satisfactory.