DDPIS: Diabetes Disease Prediction by Improvising SVM

Shivani Sharma, Bipin Kumar Rai, Mahak Gupta, Muskan Dinkar
{"title":"DDPIS: Diabetes Disease Prediction by Improvising SVM","authors":"Shivani Sharma, Bipin Kumar Rai, Mahak Gupta, Muskan Dinkar","doi":"10.4018/ijrqeh.318090","DOIUrl":null,"url":null,"abstract":"An illness that lasts longer and has continual repercussions is known as a chronic illness. Adults all across the world die as a result of chronic sickness. Diabetes disease prediction by improvising support vector machine is a platform that predicts diabetes based on the data entered into the system and offers reliable results based on that data. Earlier, the dataset consisted of a smaller number of features comprising the patients' medical details that were useful in determining the patient's health condition and was mainly focused on gestational diabetes, which only deals with pregnant women. In this work, the authors build a system that is more efficient than the previous system because of these reasons. It provides more accurate results by improvising the support vector machine, which includes more datasets and can predict the possibility of diabetes disease in both males and females.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrqeh.318090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0

Abstract

An illness that lasts longer and has continual repercussions is known as a chronic illness. Adults all across the world die as a result of chronic sickness. Diabetes disease prediction by improvising support vector machine is a platform that predicts diabetes based on the data entered into the system and offers reliable results based on that data. Earlier, the dataset consisted of a smaller number of features comprising the patients' medical details that were useful in determining the patient's health condition and was mainly focused on gestational diabetes, which only deals with pregnant women. In this work, the authors build a system that is more efficient than the previous system because of these reasons. It provides more accurate results by improvising the support vector machine, which includes more datasets and can predict the possibility of diabetes disease in both males and females.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DDPIS:改进SVM预测糖尿病
一种持续时间较长并有持续影响的疾病被称为慢性病。全世界的成年人都死于慢性病。即兴糖尿病疾病预测支持向量机是一个根据输入系统的数据预测糖尿病并根据该数据提供可靠结果的平台。早些时候,该数据集由较少数量的特征组成,这些特征包括患者的医疗细节,这些特征有助于确定患者的健康状况,并且主要集中在妊娠糖尿病上,仅涉及孕妇。在这项工作中,由于这些原因,作者构建了一个比以前的系统更高效的系统。它通过改进支持向量机提供更准确的结果,支持向量机包含更多的数据集,可以预测男性和女性患糖尿病的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
43
期刊最新文献
Probabilistic Model of Patient Classification Using Bayesian Model A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images The Effect of E-Learning and Traditional Teaching Done Hand-in-Hand for First-Year M.B.B.S. Students Decentralized Blockchain-Enabled Employee Authentication System Hybrid Artificial Intelligence-Based Models for Prediction of Death Rate in India Due to COVID-19 Transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1