{"title":"Spatiotemporal Variations of Riverine CO2 Partial Pressure and its Effect on CO2 Flux at the Water–Air Interface in a Small Karst River","authors":"Shengjun Ding, Zhongfa Zhou, Hui Dong, Lihui Yan, Liangxing Shi, Jing Huang, Heng Zhang","doi":"10.1007/s10498-022-09406-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the global carbon cycle, rivers are the main transport channel for terrestrial carbon sources into the ocean, and their CO<sub>2</sub> fluxes at the water–air interface affect the carbon budget. As an important component of the carbon cycle in the terrestrial ecosystem, karst regions exhibit carbon source and sink effects due to their special environmental conditions. To elaborate the spatial and temporal distribution of CO<sub>2</sub> fluxes at the water–air interface of karst rivers and the influencing factors, systematic monitoring of small karst rivers in southwest China was conducted between November and December 2019 and between June and July 2020, respectively. The results show that: (1) the water chemistry of Chiwuxi River belonged to the HCO<sub>3</sub>–Ca–Mg type, and Ca<sup>2+</sup> and HCO<sub>3</sub><sup>−</sup> temporally showed a larger concentration in the dry season than in the wet season. (2) CO<sub>2</sub> partial pressure (<i>p</i>CO<sub>2</sub>) and CO<sub>2</sub> fluxes showed a seasonal characteristic of higher values in the wet season than in the dry season. <i>p</i>CO<sub>2</sub> ranged from 323.59 to 1380.38 μatm and CO<sub>2</sub> fluxes ranged from −24.31 to 353.74 mmol (m<sup>2</sup> d)<sup>−1</sup>. During the wet season, the Chiwuxi River showed a carbon source effect. During the dry season, the photosynthesis of aquatic plants reduced CO<sub>2</sub> outgassing. (3) Isotopic compositions of dissolved inorganic carbon (δ<sup>13</sup>C<sub>DIC</sub>) showed a higher value in the dry season than in the wet season. The dissolved inorganic carbon mainly originated from soil CO<sub>2</sub> and carbonate weathering. To improve the understanding of riverine carbon cycling, it is necessary to study CO<sub>2</sub> fluxes at the water–air interface of small rivers in the karst region. Thus, this will help to reduce the uncertainty of CO<sub>2</sub> fluxes in global rivers.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"28 3-4","pages":"135 - 154"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-022-09406-9.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-022-09406-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
In the global carbon cycle, rivers are the main transport channel for terrestrial carbon sources into the ocean, and their CO2 fluxes at the water–air interface affect the carbon budget. As an important component of the carbon cycle in the terrestrial ecosystem, karst regions exhibit carbon source and sink effects due to their special environmental conditions. To elaborate the spatial and temporal distribution of CO2 fluxes at the water–air interface of karst rivers and the influencing factors, systematic monitoring of small karst rivers in southwest China was conducted between November and December 2019 and between June and July 2020, respectively. The results show that: (1) the water chemistry of Chiwuxi River belonged to the HCO3–Ca–Mg type, and Ca2+ and HCO3− temporally showed a larger concentration in the dry season than in the wet season. (2) CO2 partial pressure (pCO2) and CO2 fluxes showed a seasonal characteristic of higher values in the wet season than in the dry season. pCO2 ranged from 323.59 to 1380.38 μatm and CO2 fluxes ranged from −24.31 to 353.74 mmol (m2 d)−1. During the wet season, the Chiwuxi River showed a carbon source effect. During the dry season, the photosynthesis of aquatic plants reduced CO2 outgassing. (3) Isotopic compositions of dissolved inorganic carbon (δ13CDIC) showed a higher value in the dry season than in the wet season. The dissolved inorganic carbon mainly originated from soil CO2 and carbonate weathering. To improve the understanding of riverine carbon cycling, it is necessary to study CO2 fluxes at the water–air interface of small rivers in the karst region. Thus, this will help to reduce the uncertainty of CO2 fluxes in global rivers.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.