Data-Driven Analysis of High-Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity**

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemistry methods : new approaches to solving problems in chemistry Pub Date : 2022-06-10 DOI:10.1002/cmtd.202200008
Dr. Anand Narayanan Krishnamoorthy, Dr. Christian Wölke, Dr. Diddo Diddens, Dr. Moumita Maiti, Youssef Mabrouk, Peng Yan, Dr. Mariano Grünebaum, Prof. Dr. Martin Winter, Prof. Dr. Andreas Heuer, Dr. Isidora Cekic-Laskovic
{"title":"Data-Driven Analysis of High-Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity**","authors":"Dr. Anand Narayanan Krishnamoorthy,&nbsp;Dr. Christian Wölke,&nbsp;Dr. Diddo Diddens,&nbsp;Dr. Moumita Maiti,&nbsp;Youssef Mabrouk,&nbsp;Peng Yan,&nbsp;Dr. Mariano Grünebaum,&nbsp;Prof. Dr. Martin Winter,&nbsp;Prof. Dr. Andreas Heuer,&nbsp;Dr. Isidora Cekic-Laskovic","doi":"10.1002/cmtd.202200008","DOIUrl":null,"url":null,"abstract":"<p>A specially designed high-throughput experimentation facility, used for the highly effective exploration of electrolyte formulations in composition space for diverse battery chemistries and targeted applications, is presented. It follows a high-throughput formulation-characterization-optimization chain based on a set of previously established electrolyte-related requirements. Here, the facility is used to acquire large dataset of ionic conductivities of non-aqueous battery electrolytes in the conducting salt-solvent/co-solvent-additive composition space. The measured temperature dependence is mapped on three generalized Arrhenius parameters, including deviations from simple activated dynamics. This reduced dataset is thereafter analyzed by a scalable data-driven workflow, based on linear and Gaussian process regression, providing detailed information about the compositional dependence of the conductivity. Complete insensitivity to the addition of electrolyte additives for otherwise constant molar composition is observed. Quantitative dependencies, for example, on the temperature-dependent conducting salt content for optimum conductivity are provided and discussed in light of physical properties such as viscosity and ion association effects.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200008","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

A specially designed high-throughput experimentation facility, used for the highly effective exploration of electrolyte formulations in composition space for diverse battery chemistries and targeted applications, is presented. It follows a high-throughput formulation-characterization-optimization chain based on a set of previously established electrolyte-related requirements. Here, the facility is used to acquire large dataset of ionic conductivities of non-aqueous battery electrolytes in the conducting salt-solvent/co-solvent-additive composition space. The measured temperature dependence is mapped on three generalized Arrhenius parameters, including deviations from simple activated dynamics. This reduced dataset is thereafter analyzed by a scalable data-driven workflow, based on linear and Gaussian process regression, providing detailed information about the compositional dependence of the conductivity. Complete insensitivity to the addition of electrolyte additives for otherwise constant molar composition is observed. Quantitative dependencies, for example, on the temperature-dependent conducting salt content for optimum conductivity are provided and discussed in light of physical properties such as viscosity and ion association effects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液体电池电解质配方的高通量实验数据驱动分析:揭示成分对电导率的影响**
介绍了一个专门设计的高通量实验设备,用于在不同电池化学成分和目标应用的组合空间中高效探索电解质配方。它遵循基于先前建立的一系列电解质相关要求的高通量配方-表征-优化链。在这里,该设备用于获取导电盐-溶剂/助溶剂-添加剂组合空间中非水电池电解质的离子电导率的大型数据集。测量的温度依赖关系映射到三个广义阿伦尼乌斯参数,包括从简单激活动力学的偏差。然后,通过基于线性和高斯过程回归的可扩展数据驱动工作流对该简化数据集进行分析,提供有关电导率成分依赖性的详细信息。对电解质添加剂的添加完全不敏感,否则摩尔组成不变。例如,根据粘度和离子结合效应等物理性质,提供并讨论了用于最佳电导率的与温度相关的导电盐含量的定量依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
期刊最新文献
Cover Picture: (Chem. Methods 9/2024) Insights into CO2 Diffusion on Zeolite 13X via Frequency Response Technique Cover Picture: (Chem. Methods 7-8/2024) Ultraselective, Ultrahigh Resolution 1D TOCSY Conjugation Methods in Synthetic Glycoconjugate Vaccines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1