Theoretical Simulations on Physicochemical Performance of Novel High-energy BHDBT-based Propellants

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Central European Journal of Energetic Materials Pub Date : 2021-03-30 DOI:10.22211/CEJEM/134652
Ke Wang, Hai-tao Huang, Huixiang Xu, Huan Li, Jun-qiang Li, X. Fan, W. Pang
{"title":"Theoretical Simulations on Physicochemical Performance of Novel High-energy BHDBT-based Propellants","authors":"Ke Wang, Hai-tao Huang, Huixiang Xu, Huan Li, Jun-qiang Li, X. Fan, W. Pang","doi":"10.22211/CEJEM/134652","DOIUrl":null,"url":null,"abstract":"Based on Energy Calculation Star program and molecular dynamic method, three designed 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate-based (BHDBT) propellants are firstly reported and their physicochemical performance are investigated. Results suggest that compared with HMX-based and CL-20-based propellants, the specific impulses of all BHDBT-based propellants surpass or approximate 280 s, which indicates the latter have the potential to be high-energy propellants. The diffusion coefficient of plasticizers in BHDBT-based propellant decrease as the temperature reduces, and reduce in the order: Bu-NENA > TMETN > BTTN. The densities of all BHDBT-based propellants surpass or approximate 1.7 g/cm3. The comparison of elastic constants, Poisson’s ratios and K/G values indicates that the mechanical properties of three BHDBT-based propellants increase in the order (by plasticizer): Bu-NENA < TMETN < BTTN. The bond length analysis of C–NO2 and O–NO2 bond in BHDBT suggests that the former is the trigger bond in the BHDBT-based propellants, and the safety of BHDBT-based propellants and BHDBT crystal decreases in the order: GAP/BTTN/Al/BHDBT > GAP/Bu-NENA/Al/BHDBT ≈ GAP/TMETN/Al/BHDBT > BHDBT. In conclusion, GAP/BTTN/Al/BHDBT propellant has the potential to be a novel high-energy propellant.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/CEJEM/134652","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Based on Energy Calculation Star program and molecular dynamic method, three designed 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate-based (BHDBT) propellants are firstly reported and their physicochemical performance are investigated. Results suggest that compared with HMX-based and CL-20-based propellants, the specific impulses of all BHDBT-based propellants surpass or approximate 280 s, which indicates the latter have the potential to be high-energy propellants. The diffusion coefficient of plasticizers in BHDBT-based propellant decrease as the temperature reduces, and reduce in the order: Bu-NENA > TMETN > BTTN. The densities of all BHDBT-based propellants surpass or approximate 1.7 g/cm3. The comparison of elastic constants, Poisson’s ratios and K/G values indicates that the mechanical properties of three BHDBT-based propellants increase in the order (by plasticizer): Bu-NENA < TMETN < BTTN. The bond length analysis of C–NO2 and O–NO2 bond in BHDBT suggests that the former is the trigger bond in the BHDBT-based propellants, and the safety of BHDBT-based propellants and BHDBT crystal decreases in the order: GAP/BTTN/Al/BHDBT > GAP/Bu-NENA/Al/BHDBT ≈ GAP/TMETN/Al/BHDBT > BHDBT. In conclusion, GAP/BTTN/Al/BHDBT propellant has the potential to be a novel high-energy propellant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型高能BHDBT基推进剂物理化学性能的理论模拟
基于能量计算星程序和分子动力学方法,首次报道了三种设计的2,3-双(羟甲基)-2,3-二硝基-1,4-丁二醇四硝酸酯基(BHDBT)推进剂,并对其物理化学性能进行了研究。结果表明,与HMX基和CL-20基推进剂相比,所有BHDBT基推进剂的比冲都超过或接近280s,这表明后者具有成为高能推进剂的潜力。增塑剂在BHDBT基推进剂中的扩散系数随着温度的降低而降低,其降低顺序为:Bu-NENA>TMETN>BTTN。所有BHDBT基推进剂的密度都超过或接近1.7 g/cm3。弹性常数、泊松比和K/G值的比较表明,三种BHDBT基推进剂的力学性能按增塑剂的顺序增加:Bu-NENAGAP/Bu-NENA/Al/BHDBT≈GAP/TMETN/Al/BHDBT>BHDBT。总之,GAP/BTTN/Al/BHDBT推进剂具有成为一种新型高能推进剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Central European Journal of Energetic Materials
Central European Journal of Energetic Materials CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.80
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: CEJEM – the newest in Europe scientific journal on energetic materials It provides a forum for scientists interested in the exchange of practical and theoretical knowledge concerning energetic materials: propellants, explosives and pyrotechnics. The journal focuses in particular on the latest results of research on various problems of energetic materials. Topics: ignition, combustion and detonation phenomenon; formulation, synthesis and processing; analysis and thermal decomposition; toxicological, environmental and safety aspects of energetic materials production, application, utilization and demilitarization; molecular orbital calculations; detonation properties and ballistics; biotechnology and hazards testing CEJEM presents original research and interesting reviews. Contributions are from experts in chemistry, physics and engineering from leading research centers in Europe, America and Asia. All submissions are independently refereed by Editorial Board members and by external referees chosen on international basis.
期刊最新文献
Prediction of Ignition Delay Times for Amine-based Liquid Propellants through a QSPR Approach Modification of Axial Distribution of Fragment Velocity in Preformed Fragmentation Warheads Initiation Strategy of Aimable Warhead Based on Asynchronous Initiation between Lines Influence of the Prepolymer Structure of Glycidyl Azide Polymer (GAP) on Binder Properties - Some Theoretical Considerations Synthesis of a New Random Copolymer Based on Glycidyl Nitrate and Tetrahydrofuran: A Thermal, Kinetic, and Theoretical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1