Lead, zinc and arsenic contamination of pit lake waters in the Zeida abandoned mine (High Moulouya, Morocco)

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geochemistry-Exploration Environment Analysis Pub Date : 2021-08-09 DOI:10.1144/geochem2021-009
L. El Alaoui, A. Dekayir, Mohammed Rouai, El Mehdi Benyassine
{"title":"Lead, zinc and arsenic contamination of pit lake waters in the Zeida abandoned mine (High Moulouya, Morocco)","authors":"L. El Alaoui, A. Dekayir, Mohammed Rouai, El Mehdi Benyassine","doi":"10.1144/geochem2021-009","DOIUrl":null,"url":null,"abstract":"In the Zeida abandoned mine, pit lake waters exhibit alkaline pH and high conductivity. The concentrations of the total dissolved lead and zinc are very low due to their adsorption on clay minerals and iron oxyhydroxides. Conversely, arsenic concentrations in two lakes (ZL1 and ZA) exceed WHO water quality guidelines. The As content is relatively high in ZL1 and exists mainly as As(V). In ZA, As(III) occurs in low concentration compared to the total dissolved arsenic, while dimethylarsenic acid (H2AsO2(CH3)2, DMA) prevails. This means that arsenic was methylated by organic matter produced by micro-organisms such as chlorella. The sequential extraction of floor sediments in the two lakes shows that the bioavailable arsenic contents change between them. In ZA, the sediments show high concentrations of lead and arsenic compared to the ZL1 sediment since it is surrounded by mining waste tailings, which are rich in these elements. An arsenic leaching test of ZA sediment shows that bioavailable arsenic is distributed in equal proportion between clay/carbonates, sulfide-organic matter and iron oxide phases, while in ZL1, most of the arsenic is linked to hydrous iron oxides. Supplementary material: Information on quality control/quality insurance for the used analytical techniques, and additional figures 9–13 are available at https://doi.org/10.6084/m9.figshare.c.5545316 Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2021-009","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

In the Zeida abandoned mine, pit lake waters exhibit alkaline pH and high conductivity. The concentrations of the total dissolved lead and zinc are very low due to their adsorption on clay minerals and iron oxyhydroxides. Conversely, arsenic concentrations in two lakes (ZL1 and ZA) exceed WHO water quality guidelines. The As content is relatively high in ZL1 and exists mainly as As(V). In ZA, As(III) occurs in low concentration compared to the total dissolved arsenic, while dimethylarsenic acid (H2AsO2(CH3)2, DMA) prevails. This means that arsenic was methylated by organic matter produced by micro-organisms such as chlorella. The sequential extraction of floor sediments in the two lakes shows that the bioavailable arsenic contents change between them. In ZA, the sediments show high concentrations of lead and arsenic compared to the ZL1 sediment since it is surrounded by mining waste tailings, which are rich in these elements. An arsenic leaching test of ZA sediment shows that bioavailable arsenic is distributed in equal proportion between clay/carbonates, sulfide-organic matter and iron oxide phases, while in ZL1, most of the arsenic is linked to hydrous iron oxides. Supplementary material: Information on quality control/quality insurance for the used analytical techniques, and additional figures 9–13 are available at https://doi.org/10.6084/m9.figshare.c.5545316 Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zeida废矿坑湖水体铅、锌和砷污染(摩洛哥高穆卢亚)
在Zeida废弃矿井中,矿坑湖水呈现碱性pH值和高电导率。总溶解的铅和锌的浓度非常低,这是由于它们在粘土矿物和氧化铁上的吸附。相反,两个湖泊(ZL1和ZA)的砷浓度超过了世界卫生组织的水质指南。ZL1中As含量较高,主要以As(V)形式存在。在ZA中,与总溶解砷相比,As(III)的浓度较低,而二甲基砷酸(H2AsO2(CH3)2,DMA)占主导地位。这意味着砷被小球藻等微生物产生的有机物甲基化。对两个湖泊底层沉积物的连续提取表明,生物可利用砷含量在两个湖泊之间发生变化。在ZA,与ZL1沉积物相比,沉积物显示出高浓度的铅和砷,因为它被富含这些元素的采矿废尾矿包围。ZA沉积物的砷浸出试验表明,生物可利用砷以等比例分布在粘土/碳酸盐、硫化物有机物和氧化铁相中,而在ZL1中,大部分砷与含水氧化铁有关。补充材料:有关所用分析技术的质量控制/质量保险的信息,以及其他图9-13,请访问https://doi.org/10.6084/m9.figshare.c.5545316主题集:本文是与勘探和环境问题相关的水化学集的一部分,可在以下网站获取:https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
期刊最新文献
Multi-element geochemical analyses on ultrafine soils in Western Australia - Towards establishing abundance ranges in mineral exploration settings Alteration assemblage characterization using machine learning applied to high resolution drill-core images, hyperspectral data, and geochemistry Silver, cobalt and nickel mineralogy and geochemistry of shale ore in the sediment-hosted stratiform Nowa Sól Cu-Ag deposit, SW Poland Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach Spatial distribution, ecological risk and origin of soil heavy metals in Laoguanhe watershed of the Middle Route of China's South-to-North Water Diversion Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1