Immutability and Encapsulation for Sound OO Information Flow Control

IF 1.5 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Programming Languages and Systems Pub Date : 2022-12-02 DOI:10.1145/3573270
Tobias Runge, M. Servetto, A. Potanin, Ina Schaefer
{"title":"Immutability and Encapsulation for Sound OO Information Flow Control","authors":"Tobias Runge, M. Servetto, A. Potanin, Ina Schaefer","doi":"10.1145/3573270","DOIUrl":null,"url":null,"abstract":"Security-critical software applications contain confidential information which has to be protected from leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can be enforced. Such techniques are for example type systems that enforce an information flow policy through typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active research: an appropriate system should not reject too many secure programs while soundly preserving noninterference. In this work, we introduce the language SIFO which supports information flow control for an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system, prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and evaluate it with a feasibility study and a benchmark.","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"45 1","pages":"1 - 35"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3573270","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

Security-critical software applications contain confidential information which has to be protected from leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can be enforced. Such techniques are for example type systems that enforce an information flow policy through typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active research: an appropriate system should not reject too many secure programs while soundly preserving noninterference. In this work, we introduce the language SIFO which supports information flow control for an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system, prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and evaluate it with a feasibility study and a benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向对象信息流控制的不变性和封装
安全关键软件应用程序包含机密信息,必须加以保护,以免泄漏到未经授权的系统。使用基于语言的技术,可以强制执行应用程序的机密性。例如,此类技术是通过类型规则强制执行信息流策略的类型系统。这种类型系统的精确性,特别是在面向对象语言中,是一个活跃的研究领域:一个合适的系统不应该拒绝太多的安全程序,同时完好地保持不干扰。在这项工作中,我们引入了SIFO语言,它支持带有类型修饰符的面向对象语言的信息流控制。类型修饰符通过利用对象的不变性和唯一性来检测信息泄漏,从而提高了类型系统的精度。我们通过实例非正式地展示了SIFO语言的适用性,形式化了类型系统,证明了不干扰性,在编程语言L42中实现了SIFO作为可插拔类型系统,并通过可行性研究和基准测试对其进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Programming Languages and Systems
ACM Transactions on Programming Languages and Systems 工程技术-计算机:软件工程
CiteScore
3.10
自引率
7.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects: language design for sequential and parallel programming programming language implementation programming language semantics compilers and interpreters runtime systems for program execution storage allocation and garbage collection languages and methods for writing program specifications languages and methods for secure and reliable programs testing and verification of programs
期刊最新文献
Proving Correctness of Parallel Implementations of Transition System Models CFLOBDDs: Context-Free-Language Ordered Binary Decision Diagrams Adversities in Abstract Interpretation: Accommodating Robustness by Abstract Interpretation: ACM Transactions on Programming Languages and Systems: Vol 0, No ja Homeostasis: Design and Implementation of a Self-Stabilizing Compiler Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1