Innovative Framework for Robustness Analysis of Blade Multicavity Squealer Tip Aerothermal Performance

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Thermophysics and Heat Transfer Pub Date : 2023-06-01 DOI:10.2514/1.t6777
Ming Huang, Kai Zhang, Zhigang Li, Jun Li
{"title":"Innovative Framework for Robustness Analysis of Blade Multicavity Squealer Tip Aerothermal Performance","authors":"Ming Huang, Kai Zhang, Zhigang Li, Jun Li","doi":"10.2514/1.t6777","DOIUrl":null,"url":null,"abstract":"Gas turbines are subject to various geometric and operational uncertainties, which are often overlooked in conventional research. Therefore, conclusions derived from a deterministic approach may not accurately reflect the actual gas turbine operation. To address this issue, this paper presents an effective uncertainty quantification framework for evaluating the aerothermal performance robustness of the multicavity squealer tip. Moreover, a novel visualization method is developed to analyze the uncertainty flow and thermal fields. The findings suggest that conventional research tends to overestimate the aerodynamic performance of the multicavity squealer tip. The installation of ribs can exacerbate the chaotic tendency of the flowfield, leading to a significant reduction in the aerodynamic performance robustness of the squealer tip during actual operation. However, the heat transfer performance robustness of the multicavity squealer tip is substantially enhanced due to the inability of the flowfield uncertainty to transfer to the thermal field through the ribs. Furthermore, the study reveals high heat flux fluctuations in the region near the ribs root, which highlights the importance of considering thermal fatigue risks in the design of multicavity squealer tips.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6777","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Gas turbines are subject to various geometric and operational uncertainties, which are often overlooked in conventional research. Therefore, conclusions derived from a deterministic approach may not accurately reflect the actual gas turbine operation. To address this issue, this paper presents an effective uncertainty quantification framework for evaluating the aerothermal performance robustness of the multicavity squealer tip. Moreover, a novel visualization method is developed to analyze the uncertainty flow and thermal fields. The findings suggest that conventional research tends to overestimate the aerodynamic performance of the multicavity squealer tip. The installation of ribs can exacerbate the chaotic tendency of the flowfield, leading to a significant reduction in the aerodynamic performance robustness of the squealer tip during actual operation. However, the heat transfer performance robustness of the multicavity squealer tip is substantially enhanced due to the inability of the flowfield uncertainty to transfer to the thermal field through the ribs. Furthermore, the study reveals high heat flux fluctuations in the region near the ribs root, which highlights the importance of considering thermal fatigue risks in the design of multicavity squealer tips.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叶片多腔挤压器叶尖气热性能鲁棒性分析的创新框架
燃气轮机受到各种几何和操作不确定性的影响,而这些不确定性在传统研究中经常被忽视。因此,从确定性方法得出的结论可能无法准确反映燃气轮机的实际运行情况。为了解决这个问题,本文提出了一个有效的不确定性量化框架,用于评估多腔尖部的气热性能鲁棒性。此外,还开发了一种新的可视化方法来分析不确定性流场和热场。研究结果表明,传统的研究往往高估了多腔尖声器的气动性能。肋的安装会加剧流场的混乱趋势,导致实际操作过程中尖叫器尖端的空气动力学性能鲁棒性显著降低。然而,由于流场不确定性无法通过肋传递到热场,多腔尖叫器尖端的传热性能鲁棒性显著增强。此外,该研究揭示了肋根附近区域的高热通量波动,这突出了在设计多腔尖部时考虑热疲劳风险的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
期刊最新文献
Performance Estimation of a Capillary-Fed Evaporative Microthruster Transient Response Analysis in Spacecraft Thermal Protection Structures Under Periodic Thermal Disturbances Characteristic Vibrational and Rotational Relaxation Times for Air Species from First-Principles Calculations Magnetohydrodynamics Flow of Hybrid Nanofluid Rotating in Annulus Through Two Coaxial Cylinders Direct Validation of Approximate Models for Molecular Vibrational Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1