HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS

Q3 Economics, Econometrics and Finance Applied Computer Science Pub Date : 2022-10-01 DOI:10.35784/acs-2022-26
Sheikh Amir Fayaz, Majid Zaman, M. A. Butt, S. Kaul
{"title":"HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS","authors":"Sheikh Amir Fayaz, Majid Zaman, M. A. Butt, S. Kaul","doi":"10.35784/acs-2022-26","DOIUrl":null,"url":null,"abstract":"Rainfall prediction is one of the most challenging task faced by researchers over the years. Many machine learning and AI based algorithms have been implemented on different datasets for better prediction purposes, but there is not a single solution which perfectly predicts the rainfall. Accurate prediction still remains a question to researchers. We offer a machine learning-based comparison evaluation of rainfall models for Kashmir province. Both local geographic features and the time horizon has influence on weather forecasting. Decision trees, Logistic Model Trees (LMT), and M5 model trees are examples of predictive models based on algorithms. GWLM-NARX, Gradient Boosting, and other techniques were investigated. Weather predictors measured from three major meteorological stations in the Kashmir area of the UT of J&K, India, were utilized in the models. We compared the proposed models based on their accuracy, kappa, interpretability, and other statistics, as well as the significance of the predictors utilized. On the original dataset, the DT model delivers an accuracy of 80.12 percent, followed by the LMT and Gradient boosting models, which produce accuracy of 87.23 percent and 87.51 percent, respectively. Furthermore, when continuous data was used in the M5-MT and GWLM-NARX models, the NARX model performed better, with mean squared error (MSE) and regression value (R) predictions of 3.12 percent and 0.9899 percent in training, 0.144 percent and 0.9936 percent in validation, and 0.311 percent and 0.9988 percent in testing.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2022-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall prediction is one of the most challenging task faced by researchers over the years. Many machine learning and AI based algorithms have been implemented on different datasets for better prediction purposes, but there is not a single solution which perfectly predicts the rainfall. Accurate prediction still remains a question to researchers. We offer a machine learning-based comparison evaluation of rainfall models for Kashmir province. Both local geographic features and the time horizon has influence on weather forecasting. Decision trees, Logistic Model Trees (LMT), and M5 model trees are examples of predictive models based on algorithms. GWLM-NARX, Gradient Boosting, and other techniques were investigated. Weather predictors measured from three major meteorological stations in the Kashmir area of the UT of J&K, India, were utilized in the models. We compared the proposed models based on their accuracy, kappa, interpretability, and other statistics, as well as the significance of the predictors utilized. On the original dataset, the DT model delivers an accuracy of 80.12 percent, followed by the LMT and Gradient boosting models, which produce accuracy of 87.23 percent and 87.51 percent, respectively. Furthermore, when continuous data was used in the M5-MT and GWLM-NARX models, the NARX model performed better, with mean squared error (MSE) and regression value (R) predictions of 3.12 percent and 0.9899 percent in training, 0.144 percent and 0.9936 percent in validation, and 0.311 percent and 0.9988 percent in testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法在气象数据分类中的应用&DT、LMT、M5-MT、梯度增强和GWLM-NARX模型的比较
降雨预测是多年来研究人员面临的最具挑战性的任务之一。许多基于机器学习和人工智能的算法已经在不同的数据集上实现了更好的预测目的,但没有一个解决方案可以完美地预测降雨。对研究人员来说,准确的预测仍然是一个问题。我们为克什米尔省的降雨模型提供了一个基于机器学习的比较评估。当地的地理特征和时间范围对天气预报都有影响。决策树、逻辑模型树(LMT)和M5模型树是基于算法的预测模型的例子。研究了GWLM-NARX、梯度增强等技术。这些模型使用了来自印度查谟克什米尔地区三个主要气象站的天气预报。我们根据模型的准确性、kappa、可解释性和其他统计数据,以及所使用预测因子的显著性,对所提出的模型进行了比较。在原始数据集上,DT模型的准确率为80.12%,其次是LMT和Gradient boosting模型,其准确率分别为87.23%和87.51%。此外,当在M5-MT和GWLM-NARX模型中使用连续数据时,NARX模型表现更好,训练时的均方误差(MSE)和回归值(R)预测分别为3.12%和0.9899%,验证时为0.144%和0.9936%,测试时为0.311%和0.9988%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS. FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1