{"title":"Fractional Calderón problems and Poincaré inequalities on unbounded domains","authors":"J. Railo, Philipp Zimmermann","doi":"10.4171/jst/444","DOIUrl":null,"url":null,"abstract":"We generalize many recent uniqueness results on the fractional Calder\\'on problem to cover the cases of all domains with nonempty exterior. The highlight of our work is the characterization of uniqueness and nonuniqueness of partial data inverse problems for the fractional conductivity equation on domains that are bounded in one direction for conductivities supported in the whole Euclidean space and decaying to a constant background conductivity at infinity. We generalize the uniqueness proof for the fractional Calder\\'on problem by Ghosh, Salo and Uhlmann to a general abstract setting in order to use the full strength of their argument. This allows us to observe that there are also uniqueness results for many inverse problems for higher order local perturbations of a lower order fractional Laplacian. We give concrete example models to illustrate these curious situations and prove Poincar\\'e inequalities for the fractional Laplacians of any order on domains that are bounded in one direction. We establish Runge approximation results in these general settings, improve regularity assumptions also in the cases of bounded sets and prove general exterior determination results. Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data are constructed in another companion work.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/444","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
We generalize many recent uniqueness results on the fractional Calder\'on problem to cover the cases of all domains with nonempty exterior. The highlight of our work is the characterization of uniqueness and nonuniqueness of partial data inverse problems for the fractional conductivity equation on domains that are bounded in one direction for conductivities supported in the whole Euclidean space and decaying to a constant background conductivity at infinity. We generalize the uniqueness proof for the fractional Calder\'on problem by Ghosh, Salo and Uhlmann to a general abstract setting in order to use the full strength of their argument. This allows us to observe that there are also uniqueness results for many inverse problems for higher order local perturbations of a lower order fractional Laplacian. We give concrete example models to illustrate these curious situations and prove Poincar\'e inequalities for the fractional Laplacians of any order on domains that are bounded in one direction. We establish Runge approximation results in these general settings, improve regularity assumptions also in the cases of bounded sets and prove general exterior determination results. Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data are constructed in another companion work.
期刊介绍:
The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome.
The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory.
Schrödinger operators, scattering theory and resonances;
eigenvalues: perturbation theory, asymptotics and inequalities;
quantum graphs, graph Laplacians;
pseudo-differential operators and semi-classical analysis;
random matrix theory;
the Anderson model and other random media;
non-self-adjoint matrices and operators, including Toeplitz operators;
spectral geometry, including manifolds and automorphic forms;
linear and nonlinear differential operators, especially those arising in geometry and physics;
orthogonal polynomials;
inverse problems.