MoReVis: A Visual Summary for Spatiotemporal Moving Regions

IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Visualization and Computer Graphics Pub Date : 2023-02-26 DOI:10.48550/arXiv.2302.13199
Giovani Valdrighi, Nivan Ferreira, Jorge Poco
{"title":"MoReVis: A Visual Summary for Spatiotemporal Moving Regions","authors":"Giovani Valdrighi, Nivan Ferreira, Jorge Poco","doi":"10.48550/arXiv.2302.13199","DOIUrl":null,"url":null,"abstract":"Spatial and temporal interactions are central and fundamental in many activities in our world. A common problem faced when visualizing this type of data is how to provide an overview that helps users navigate efficiently. Traditional approaches use coordinated views or 3D metaphors like the Space-time cube to tackle this problem. However, they suffer from overplotting and often lack spatial context, hindering data exploration. More recent techniques, such as MotionRugs, propose compact temporal summaries based on 1D projection. While powerful, these techniques do not support the situation for which the spatial extent of the objects and their intersections is relevant, such as the analysis of surveillance videos or tracking weather storms. In this paper, we propose MoReVis, a visual overview of spatiotemporal data that considers the objects' spatial extent and strives to show spatial interactions among these objects by displaying spatial intersections. Like previous techniques, our method involves projecting the spatial coordinates to 1D to produce compact summaries. However, our solution's core consists of performing a layout optimization step that sets the size and positions of the visual marks on the summary to resemble the actual values on the original space. We also provide multiple interactive mechanisms to make interpreting the results more straightforward for the user. We perform an extensive experimental evaluation and usage scenarios. Moreover, we evaluated the usefulness of MoReVis in a study with 9 participants. The results point out the effectiveness and suitability of our method in representing different datasets compared to traditional techniques.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.13199","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial and temporal interactions are central and fundamental in many activities in our world. A common problem faced when visualizing this type of data is how to provide an overview that helps users navigate efficiently. Traditional approaches use coordinated views or 3D metaphors like the Space-time cube to tackle this problem. However, they suffer from overplotting and often lack spatial context, hindering data exploration. More recent techniques, such as MotionRugs, propose compact temporal summaries based on 1D projection. While powerful, these techniques do not support the situation for which the spatial extent of the objects and their intersections is relevant, such as the analysis of surveillance videos or tracking weather storms. In this paper, we propose MoReVis, a visual overview of spatiotemporal data that considers the objects' spatial extent and strives to show spatial interactions among these objects by displaying spatial intersections. Like previous techniques, our method involves projecting the spatial coordinates to 1D to produce compact summaries. However, our solution's core consists of performing a layout optimization step that sets the size and positions of the visual marks on the summary to resemble the actual values on the original space. We also provide multiple interactive mechanisms to make interpreting the results more straightforward for the user. We perform an extensive experimental evaluation and usage scenarios. Moreover, we evaluated the usefulness of MoReVis in a study with 9 participants. The results point out the effectiveness and suitability of our method in representing different datasets compared to traditional techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoReVis:时空运动区域的可视化总结
空间和时间的相互作用是我们世界上许多活动的中心和基础。可视化这类数据时面临的一个常见问题是如何提供帮助用户有效导航的概览。传统方法使用协调视图或三维隐喻(如时空立方体)来解决这个问题。然而,它们受到过度绘图的困扰,往往缺乏空间背景,阻碍了数据探索。最近的技术,如motionrug,提出了基于一维投影的紧凑时间摘要。虽然功能强大,但这些技术并不支持与物体的空间范围及其相交相关的情况,例如分析监控视频或跟踪天气风暴。在本文中,我们提出了MoReVis,这是一种时空数据的视觉概述,它考虑了物体的空间范围,并通过显示空间交叉点来努力显示这些物体之间的空间相互作用。与以前的技术一样,我们的方法涉及将空间坐标投影到1D以生成紧凑的摘要。然而,我们的解决方案的核心包括执行布局优化步骤,该步骤设置摘要上视觉标记的大小和位置,使其与原始空间上的实际值相似。我们还提供了多种交互机制,使用户能够更直接地解释结果。我们进行了广泛的实验评估和使用场景。此外,我们在一项有9名参与者的研究中评估了MoReVis的有效性。结果表明,与传统方法相比,我们的方法在表示不同数据集方面的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
期刊最新文献
EventPointMesh: Human Mesh Recovery Solely From Event Point Clouds A Multi-Level Task Framework for Event Sequence Analysis Who Let the Guards Out: Visual Support for Patrolling Games The Language of Infographics: Toward Understanding Conceptual Metaphor Use in Scientific Storytelling Understanding Visualization Authoring Techniques for Genomics Data in the Context of Personas and Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1