Fugui Dong, Zihang Meng, Laihao Chi, Xiaofeng Wang
{"title":"A multi-timescale optimal operation strategy for an integrated energy system considering integrated demand response and equipment response time","authors":"Fugui Dong, Zihang Meng, Laihao Chi, Xiaofeng Wang","doi":"10.1063/5.0159626","DOIUrl":null,"url":null,"abstract":"The response potential of demand-side resources is becoming increasingly significant in integrated energy system (IES) operations. In addition, to ensure the effective participation of system devices, their actual responsiveness at different timescales should be considered. Based on these considerations, this paper proposes an IES multi-timescale operation optimization strategy that incorporates multiple forms of integrated demand response (IDR) and considers the response characteristics of the equipment. First, the multi-timescale characteristics of IDR are analyzed. Moreover, a multi-timescale operation model of IES that comprises day-ahead, intraday, and real-time stages is further established. In the day-ahead dispatch, a low-carbon economic scheduling model is developed by considering the shifting demand response (DR) and the cost of carbon emissions. In the intraday scheduling, noting that cooling and heat energy transmission possess slow dynamic characteristics, a rolling optimization model for cooling/heating coupled equipment considering load shedding and substituting DR is established. In real-time scheduling, the output of electric/gas coupled equipment is adjusted. Finally, an industrial park-type IES in northern China was selected as an example for a case study. The results show that (1) the IDR multi-timescale response strategy can exploit different types of demand-side flexibility resources. After implementing the shifting DR, the peak-to-valley difference of the electric load curve was reduced by 20%, and the total system cost was reduced by 2.3%. After implementing load shedding, the maximum load differences per unit period of the electric, heat, and cooling load curves decreased by 18.7%, 40.0%, and 68.9%, respectively. (2) By refining the timescale of IES optimization, the proposed model can effectively ensure the energy supply and demand balance of the system under different load scenarios and reduce the system operation cost. After applying the model to simulation in three typical days (transition season, summer, and winter), the penalty costs of lost loads reduce by ¥3650, ¥3807, and ¥3599, respectively, and the total system costs decrease by 17.4%, 16.1%, and 16.2%, respectively.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0159626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The response potential of demand-side resources is becoming increasingly significant in integrated energy system (IES) operations. In addition, to ensure the effective participation of system devices, their actual responsiveness at different timescales should be considered. Based on these considerations, this paper proposes an IES multi-timescale operation optimization strategy that incorporates multiple forms of integrated demand response (IDR) and considers the response characteristics of the equipment. First, the multi-timescale characteristics of IDR are analyzed. Moreover, a multi-timescale operation model of IES that comprises day-ahead, intraday, and real-time stages is further established. In the day-ahead dispatch, a low-carbon economic scheduling model is developed by considering the shifting demand response (DR) and the cost of carbon emissions. In the intraday scheduling, noting that cooling and heat energy transmission possess slow dynamic characteristics, a rolling optimization model for cooling/heating coupled equipment considering load shedding and substituting DR is established. In real-time scheduling, the output of electric/gas coupled equipment is adjusted. Finally, an industrial park-type IES in northern China was selected as an example for a case study. The results show that (1) the IDR multi-timescale response strategy can exploit different types of demand-side flexibility resources. After implementing the shifting DR, the peak-to-valley difference of the electric load curve was reduced by 20%, and the total system cost was reduced by 2.3%. After implementing load shedding, the maximum load differences per unit period of the electric, heat, and cooling load curves decreased by 18.7%, 40.0%, and 68.9%, respectively. (2) By refining the timescale of IES optimization, the proposed model can effectively ensure the energy supply and demand balance of the system under different load scenarios and reduce the system operation cost. After applying the model to simulation in three typical days (transition season, summer, and winter), the penalty costs of lost loads reduce by ¥3650, ¥3807, and ¥3599, respectively, and the total system costs decrease by 17.4%, 16.1%, and 16.2%, respectively.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy