G. I. Makarov, K. S. Shilkova, A. V. Shunailov, P. V. Pavlov, T. M. Makarova
{"title":"Self-Consistent Set of Lennard–Jones Potential Parameters for Molecular Dynamics Simulations of Oxide Materials","authors":"G. I. Makarov, K. S. Shilkova, A. V. Shunailov, P. V. Pavlov, T. M. Makarova","doi":"10.1134/S1087659622600995","DOIUrl":null,"url":null,"abstract":"<p>A forcefield for high-performance molecular dynamics (MD) simulation of inorganic oxide substances, including borosilicate glasses, based on a combination of electrostatic interactions with the 6–12 type of Lennard–Jones potentials is developed. The forcefield parameters are selected to reproduce the structures and bulk moduli of the binary oxides of a wide spectrum of elements. The proposed forcefield is able to accurate reproduce structures of minerals containing two to three types of cations during the MD simulations. Application of the 6–12 potential makes it possible to carry out simultaneous MD simulations of the organic and inorganic phases, for example, in modeling composite materials with mineral and glass fillers.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 4","pages":"354 - 363"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659622600995","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A forcefield for high-performance molecular dynamics (MD) simulation of inorganic oxide substances, including borosilicate glasses, based on a combination of electrostatic interactions with the 6–12 type of Lennard–Jones potentials is developed. The forcefield parameters are selected to reproduce the structures and bulk moduli of the binary oxides of a wide spectrum of elements. The proposed forcefield is able to accurate reproduce structures of minerals containing two to three types of cations during the MD simulations. Application of the 6–12 potential makes it possible to carry out simultaneous MD simulations of the organic and inorganic phases, for example, in modeling composite materials with mineral and glass fillers.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.