{"title":"Visualizations","authors":"A. Çöltekin, A. Griffin, A. Robinson","doi":"10.1093/obo/9780199874002-0224","DOIUrl":null,"url":null,"abstract":"Visualizations (i.e., thinking in images internally in the human mind) or externally expressing a concept via graphical means—such as documenting an observation in a hand-drawn or digital visuospatial sketch, or creating a visual output from data—have always been an integral part of scientific inquiry and communication. One might argue that the ‘graphy’ part of ‘geography’ refers to visually and spatially (i.e., visuospatially) documenting the world. For the vast majority of people, a significant part of human experience is shaped by sight, and the human visual system occupies a large chunk of human cognitive processing capacity. Given that, one can speculate that comprehension and communication through visuospatial means could be ‘second nature’ to people. There is ample evidence to support this line of thinking: As opposed to written words or a large list of numbers, visualizations allow us to see patterns and anomalies quickly, sometimes even at a glance. However, the power of visualizations depends on a number of factors including the details of their design, the abilities and background of the human viewing them, and the context in which a visualization is used. This power must also be critically viewed from an ethics perspective. These three factors are elaborated under various subsections. However, first, a fundamental question needs to be asked: Is visualization a product or a process? The word visualization is commonly used as a noun for a visual product (e.g., a map or a plot is a visualization). However, both mental and external visualizations are processes, and the term ‘visualization’ as it was introduced into scientific discourse refers to a process. The process aspect is important to remember, because this is viewed as a key factor that distinguishes using visualizations to explain what is already known versus exploring the unknown. With the latter activity, visualizing things becomes a part of the scientific inquiry as an active tool that helps build hypotheses and thus facilitate thinking and reasoning, in addition to explaining what is already known. Whether the goal is to explain or to explore, the design and use of visualizations needs to be intentional and not arbitrary. To create and read visualizations intentionally, a certain level of visual literacy built on design, technology, and knowledge of human visuospatial cognition is necessary. This manuscript identifies scholarly resources to help all scientists and aspiring scientists, especially those in spatial sciences, to build, refresh their knowledge of, and learn or teach about visualizations.","PeriodicalId":46568,"journal":{"name":"Geography","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/obo/9780199874002-0224","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
Visualizations (i.e., thinking in images internally in the human mind) or externally expressing a concept via graphical means—such as documenting an observation in a hand-drawn or digital visuospatial sketch, or creating a visual output from data—have always been an integral part of scientific inquiry and communication. One might argue that the ‘graphy’ part of ‘geography’ refers to visually and spatially (i.e., visuospatially) documenting the world. For the vast majority of people, a significant part of human experience is shaped by sight, and the human visual system occupies a large chunk of human cognitive processing capacity. Given that, one can speculate that comprehension and communication through visuospatial means could be ‘second nature’ to people. There is ample evidence to support this line of thinking: As opposed to written words or a large list of numbers, visualizations allow us to see patterns and anomalies quickly, sometimes even at a glance. However, the power of visualizations depends on a number of factors including the details of their design, the abilities and background of the human viewing them, and the context in which a visualization is used. This power must also be critically viewed from an ethics perspective. These three factors are elaborated under various subsections. However, first, a fundamental question needs to be asked: Is visualization a product or a process? The word visualization is commonly used as a noun for a visual product (e.g., a map or a plot is a visualization). However, both mental and external visualizations are processes, and the term ‘visualization’ as it was introduced into scientific discourse refers to a process. The process aspect is important to remember, because this is viewed as a key factor that distinguishes using visualizations to explain what is already known versus exploring the unknown. With the latter activity, visualizing things becomes a part of the scientific inquiry as an active tool that helps build hypotheses and thus facilitate thinking and reasoning, in addition to explaining what is already known. Whether the goal is to explain or to explore, the design and use of visualizations needs to be intentional and not arbitrary. To create and read visualizations intentionally, a certain level of visual literacy built on design, technology, and knowledge of human visuospatial cognition is necessary. This manuscript identifies scholarly resources to help all scientists and aspiring scientists, especially those in spatial sciences, to build, refresh their knowledge of, and learn or teach about visualizations.