L. P. Mezentseva, A. V. Osipov, V. L. Ugolkov, L. A. Koptelova, T. V. Khamova
{"title":"Comparative Study of the Synthesis of Ceramic Composites Based on Lanthanum Orthophosphate","authors":"L. P. Mezentseva, A. V. Osipov, V. L. Ugolkov, L. A. Koptelova, T. V. Khamova","doi":"10.1134/S1087659623600345","DOIUrl":null,"url":null,"abstract":"<p>Two approaches to the synthesis of nanosized precursor powders 0.5LaPO<sub>4</sub>·<i>n</i>H<sub>2</sub>O–0.5ZrO(OH)<sub>2</sub> and 0.5LaPO<sub>4</sub>·<i>n</i>H<sub>2</sub>O–0.5Y(OH)<sub>3</sub> for the fabrication of ceramic composites 0.5LaPO<sub>4</sub>–0.5ZrO<sub>2</sub> and 0.5LaPO<sub>4</sub>–0.5Y<sub>2</sub>O<sub>3</sub> were used. In the first case, sol-gel synthesis of components (LaPO<sub>4</sub>·<i>n</i>H<sub>2</sub>O, ZrO(OH)<sub>2</sub> or Y(OH)<sub>3</sub>) was carried out separately by reverse precipitation technique. In the second case, reverse precipitation was used too but without separate preparation of sols of the components. The results of the synthesis were compared by XRD analysis, thermal behavior of precursor powders by DSC/TG technique, as well as Vickers microhardness values of 0.5LaPO<sub>4</sub>–0.5ZrO<sub>2</sub> and 0.5LaPO<sub>4</sub>–0.5Y<sub>2</sub>O<sub>3</sub> ceramic composites.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 4","pages":"379 - 385"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659623600345","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two approaches to the synthesis of nanosized precursor powders 0.5LaPO4·nH2O–0.5ZrO(OH)2 and 0.5LaPO4·nH2O–0.5Y(OH)3 for the fabrication of ceramic composites 0.5LaPO4–0.5ZrO2 and 0.5LaPO4–0.5Y2O3 were used. In the first case, sol-gel synthesis of components (LaPO4·nH2O, ZrO(OH)2 or Y(OH)3) was carried out separately by reverse precipitation technique. In the second case, reverse precipitation was used too but without separate preparation of sols of the components. The results of the synthesis were compared by XRD analysis, thermal behavior of precursor powders by DSC/TG technique, as well as Vickers microhardness values of 0.5LaPO4–0.5ZrO2 and 0.5LaPO4–0.5Y2O3 ceramic composites.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.