Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics

IF 1.6 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2023-07-07 DOI:10.1515/ijcre-2023-0010
M. Esperança, M. Cerri, V. T. Mazziero, R. Béttega, A. C. Badino
{"title":"Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics","authors":"M. Esperança, M. Cerri, V. T. Mazziero, R. Béttega, A. C. Badino","doi":"10.1515/ijcre-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract The hydrodynamics of airlift bioreactors, which offer an interesting alternative to conventional stirred-tank bioreactors, has generally been evaluated using experimental approaches, requiring time, energy, and reagents. However, computational fluid dynamics (CFD) has emerged as an important and valuable tool for the analysis and design of these devices, saving time and experimental effort, while providing a large amount of information. In this study, four geometries of a square cross-section 10-L split airlift bioreactor operating with distilled water were simulated using CFD, and the hydrodynamics variables gas hold-up and liquid velocity were evaluated. CFD satisfactorily predicted the hydrodynamic parameters, when compared to experimental data, allowing adequate prediction of the shear rate distribution in airlift bioreactors. The results indicated that different shear rate distributions were obtained by geometric modifications in the bioreactor, showing that its design should be considered to satisfy different specific bioprocess requirements.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The hydrodynamics of airlift bioreactors, which offer an interesting alternative to conventional stirred-tank bioreactors, has generally been evaluated using experimental approaches, requiring time, energy, and reagents. However, computational fluid dynamics (CFD) has emerged as an important and valuable tool for the analysis and design of these devices, saving time and experimental effort, while providing a large amount of information. In this study, four geometries of a square cross-section 10-L split airlift bioreactor operating with distilled water were simulated using CFD, and the hydrodynamics variables gas hold-up and liquid velocity were evaluated. CFD satisfactorily predicted the hydrodynamic parameters, when compared to experimental data, allowing adequate prediction of the shear rate distribution in airlift bioreactors. The results indicated that different shear rate distributions were obtained by geometric modifications in the bioreactor, showing that its design should be considered to satisfy different specific bioprocess requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用计算流体力学比较不同几何形状的方形横截面气升生物反应器
摘要气升生物反应器是传统搅拌槽生物反应器的一种有趣的替代方案,通常采用实验方法进行评估,需要时间、能量和试剂。然而,计算流体力学(CFD)已经成为分析和设计这些装置的重要和有价值的工具,节省了时间和实验精力,同时提供了大量的信息。采用CFD模拟了10-L方形截面分体式气升生物反应器的四种几何形状,并对气含率和液速进行了流体力学分析。通过与实验数据的比较,计算流体力学参数的预测结果令人满意,可以充分预测气升式生物反应器的剪切速率分布。结果表明,对生物反应器进行几何修饰可获得不同的剪切速率分布,表明其设计应考虑满足不同的特定生物工艺要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1