Pengyue Guo, Zhijing Zhang, Lingling Shi, Yujun Liu
{"title":"A contour-guided pose alignment method based on Gaussian mixture model for precision assembly","authors":"Pengyue Guo, Zhijing Zhang, Lingling Shi, Yujun Liu","doi":"10.1108/AA-08-2020-0103","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study was to solve the problem of pose measurement of various parts for a precision assembly system.\n\n\nDesign/methodology/approach\nA novel alignment method which can achieve high-precision pose measurement of microparts based on monocular microvision system was developed. To obtain the precise pose of parts, an area-based contour point set extraction algorithm and a point set registration algorithm were developed. First, the part positioning problem was transformed into a probability-based two-dimensional point set rigid registration problem. Then, a Gaussian mixture model was fitted to the template point set, and the contour point set is represented by hierarchical data. The maximum likelihood estimate and expectation-maximization algorithm were used to estimate the transformation parameters of the two point sets.\n\n\nFindings\nThe method has been validated for accelerometer assembly on a customized assembly platform through experiments. The results reveal that the proposed method can complete letter-pedestal assembly and the swing piece-basal part assembly with a minimum gap of 10 µm. In addition, the experiments reveal that the proposed method has better robustness to noise and disturbance.\n\n\nOriginality/value\nOwing to its good accuracy and robustness for the pose measurement of complex parts, this method can be easily deployed to assembly system.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/AA-08-2020-0103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
The purpose of this study was to solve the problem of pose measurement of various parts for a precision assembly system.
Design/methodology/approach
A novel alignment method which can achieve high-precision pose measurement of microparts based on monocular microvision system was developed. To obtain the precise pose of parts, an area-based contour point set extraction algorithm and a point set registration algorithm were developed. First, the part positioning problem was transformed into a probability-based two-dimensional point set rigid registration problem. Then, a Gaussian mixture model was fitted to the template point set, and the contour point set is represented by hierarchical data. The maximum likelihood estimate and expectation-maximization algorithm were used to estimate the transformation parameters of the two point sets.
Findings
The method has been validated for accelerometer assembly on a customized assembly platform through experiments. The results reveal that the proposed method can complete letter-pedestal assembly and the swing piece-basal part assembly with a minimum gap of 10 µm. In addition, the experiments reveal that the proposed method has better robustness to noise and disturbance.
Originality/value
Owing to its good accuracy and robustness for the pose measurement of complex parts, this method can be easily deployed to assembly system.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.