{"title":"Cerium-modified single perovskite CaMnO3: structural, dielectric, and transport properties","authors":"R. Meher, Rajib Padhee, Sunena Parida","doi":"10.1080/01411594.2023.2214665","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this communication, the synthesis (solid-state reaction) and characterization (structural, dielectric, and transport) of the CaMn0.9Ce0.1O3 ceramic (named, CMCO) are discussed. The CMCO has an orthorhombic crystal symmetry with an average crystallite size of 108.7 nm and lattice strain of 0.00375 respectively. The grains are distributed uniformly in a very compact manner so that highly dense material is formed and the ratio of average grain size to average crystallite size is about 21, which may be a possible reason for a better dielectric and conductivity mechanism. Raman's study confirms the presence of all constituent elements. The analysis of the dielectric properties suggests the presence of the Maxwell-Wagner type of dispersion. The study of impedance spectroscopy reveals how grains and grain boundaries play an important role to define conductivity mechanism and hence prove a non-Debye type of relaxation. The analysis of the resistance versus temperature plots supports NTC thermistor character.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"482 - 495"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2023.2214665","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this communication, the synthesis (solid-state reaction) and characterization (structural, dielectric, and transport) of the CaMn0.9Ce0.1O3 ceramic (named, CMCO) are discussed. The CMCO has an orthorhombic crystal symmetry with an average crystallite size of 108.7 nm and lattice strain of 0.00375 respectively. The grains are distributed uniformly in a very compact manner so that highly dense material is formed and the ratio of average grain size to average crystallite size is about 21, which may be a possible reason for a better dielectric and conductivity mechanism. Raman's study confirms the presence of all constituent elements. The analysis of the dielectric properties suggests the presence of the Maxwell-Wagner type of dispersion. The study of impedance spectroscopy reveals how grains and grain boundaries play an important role to define conductivity mechanism and hence prove a non-Debye type of relaxation. The analysis of the resistance versus temperature plots supports NTC thermistor character.
期刊介绍:
Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include:
-structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.)
-geophysical phase transitions
-metal-insulator phase transitions
-superconducting and superfluid transitions
-magnetic phase transitions
-critical phenomena and physical properties at phase transitions
-liquid crystals
-technological applications of phase transitions
-quantum phase transitions
Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.