Kinematically engaged yoke system for segmented lens-based space telescope integration and testing

IF 1.9 4区 物理与天体物理 Q3 OPTICS Journal of the European Optical Society-Rapid Publications Pub Date : 2023-04-09 DOI:10.1051/jeos/2023016
Daewook Kim
{"title":"Kinematically engaged yoke system for segmented lens-based space telescope integration and testing","authors":"Daewook Kim","doi":"10.1051/jeos/2023016","DOIUrl":null,"url":null,"abstract":"One of the most profound and philosophically captivating foci of modern astronomy is the study of Earth-like exoplanets in the search for life in the Universe. The paradigm-shifting investigation described here calls for a new type of scalable space telescope that redefines the available light-collecting area in space. The Nautilus Space Observatory, enabled by multiple-order diffractive optics (the MODE lens), is ushering in the advent of large space telescope lenses designed to search for biosignatures on a thousand exo-earths. The Kinematically Engaged Yoke System (KEYS) was developed to align a segmented version of the MODE lens. A technology demonstration prototype of KEYS was built and tested using scanning white light interferometry and deflectometry. A deflectometry system was also developed to monitor the closed-loop alignment of the segmented MODE lens during its UV (i.e., Ultraviolet) curing.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023016","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most profound and philosophically captivating foci of modern astronomy is the study of Earth-like exoplanets in the search for life in the Universe. The paradigm-shifting investigation described here calls for a new type of scalable space telescope that redefines the available light-collecting area in space. The Nautilus Space Observatory, enabled by multiple-order diffractive optics (the MODE lens), is ushering in the advent of large space telescope lenses designed to search for biosignatures on a thousand exo-earths. The Kinematically Engaged Yoke System (KEYS) was developed to align a segmented version of the MODE lens. A technology demonstration prototype of KEYS was built and tested using scanning white light interferometry and deflectometry. A deflectometry system was also developed to monitor the closed-loop alignment of the segmented MODE lens during its UV (i.e., Ultraviolet) curing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分段透镜的空间望远镜运动学啮合轭系统集成与测试
在寻找宇宙生命的过程中,对类地系外行星的研究是现代天文学中最深刻、最具哲学魅力的焦点之一。这里描述的范式转换研究需要一种新型的可扩展空间望远镜,它可以重新定义空间中可用的光收集区域。由多阶衍射光学(MODE透镜)支持的鹦鹉螺空间天文台正在引领大型太空望远镜透镜的出现,这些望远镜旨在寻找上千个系外地球上的生物特征。开发了运动啮合轭系统(KEYS)来对准MODE镜头的分段版本。建立了KEYS的技术演示样机,并采用扫描白光干涉法和偏转法对其进行了测试。还开发了一个偏转测量系统,以监测其在UV(即紫外线)固化期间的分段模式透镜的闭环对准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
期刊最新文献
Estimating the Absorption and Waveguiding in Porous Slabs from Multi-modal Measurements Towards a portable setup for the on-site SERS detection of miRNAs Orbital Angular Momentum Multiplexing Architecture for OAM/SDM Passive Optical Networks Analysis of the recording of Fibonacci lenses on photopolymers with 3-D diffusion model A method of fluorescence molecular tomographic reconstruction via the second-order sensitivity matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1