Jaeyoung Park, Jae-Hyun Lee, Jang-Sik Lee, Hyunsu Cho
{"title":"Effect of a P-doped hole transport and charge generation layer on single and two-tandem blue top-emitting organic light-emitting diodes","authors":"Jaeyoung Park, Jae-Hyun Lee, Jang-Sik Lee, Hyunsu Cho","doi":"10.1080/15980316.2020.1863273","DOIUrl":null,"url":null,"abstract":"The transmittance of the p-doped hole transporting layer (p-HTL) and the charge generation layer (p-CGL) corresponding to the photoluminescence (PL) of blue dopants in an emitting layer decreases as the ratio of the p-dopant increases due to the absorption of the p-dopant. However, there was little difference in the luminous efficiency of blue top-emitting organic light-emitting diodes using p-HTL or p-CGL at a maximum doping ratio of 20%. p-HTL for a single structure required a 5% doping ratio to ensure sufficient electrical characteristics, but p-CGL for the two-stack tandem structure required more than a 10% doping ratio. The optical simulation showed that the device was affected by the specific absorbance of the p-dopant depending on the doping ratio and thickness. Although there was no significant difference in efficiency depending on the doping ratio at a thickness of 10 nm, the reduction rate of the external quantum efficiency increased from over 20 nm due to the doping ratio.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"22 1","pages":"107 - 113"},"PeriodicalIF":3.7000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15980316.2020.1863273","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2020.1863273","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
The transmittance of the p-doped hole transporting layer (p-HTL) and the charge generation layer (p-CGL) corresponding to the photoluminescence (PL) of blue dopants in an emitting layer decreases as the ratio of the p-dopant increases due to the absorption of the p-dopant. However, there was little difference in the luminous efficiency of blue top-emitting organic light-emitting diodes using p-HTL or p-CGL at a maximum doping ratio of 20%. p-HTL for a single structure required a 5% doping ratio to ensure sufficient electrical characteristics, but p-CGL for the two-stack tandem structure required more than a 10% doping ratio. The optical simulation showed that the device was affected by the specific absorbance of the p-dopant depending on the doping ratio and thickness. Although there was no significant difference in efficiency depending on the doping ratio at a thickness of 10 nm, the reduction rate of the external quantum efficiency increased from over 20 nm due to the doping ratio.