Numerical Study on Particle Transport and Placement Behaviors of Ultralow Density Particles in Fracture-Vuggy Reservoirs

IF 1.4 4区 工程技术 Q2 ENGINEERING, PETROLEUM Spe Production & Operations Pub Date : 2022-02-01 DOI:10.2118/209193-pa
Tao Zhang, Haoran Gou, Kefan Mu, Jianchun Guo, Ruoyu Yang, Ming Li
{"title":"Numerical Study on Particle Transport and Placement Behaviors of Ultralow Density Particles in Fracture-Vuggy Reservoirs","authors":"Tao Zhang, Haoran Gou, Kefan Mu, Jianchun Guo, Ruoyu Yang, Ming Li","doi":"10.2118/209193-pa","DOIUrl":null,"url":null,"abstract":"\n A solid/liquid two-phase flow numerical model based on the computational fluid dynamics-discrete element method (CFD-DEM) model was established to study the transport and settlement law of ultralow-density (ULD) particles during the waterdrive channel adjustment of the Tahe carbonate fractured-vuggy reservoir. The mass, momentum, and turbulence equations of the fluid phase were established in Euler coordinates, whereas the particle motion equations were established based on Newton’s second law. The interaction between the ULD particles was described using a soft sphere model, and the water and particle phases were bidirectionally coupled. Meanwhile, virtual experiments were conducted to calibrate the contact parameters of the particles, and parallel plate experiments were performed to validate the model. Using numerical simulations of particle transport behavior in fractures, the process and characteristics of particle transport and placement in fractures are demonstrated, which can be described by the settlement profile angle and equilibrium gap height. According to parameterized simulations, the change law of the settlement profile angle and equilibrium gap height with different parameters such as particle size, pump displacement, and fracture width are demonstrated, which is helpful for the prediction of migration and accumulation of ULD particles in fracture-vuggy reservoirs.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/209193-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

A solid/liquid two-phase flow numerical model based on the computational fluid dynamics-discrete element method (CFD-DEM) model was established to study the transport and settlement law of ultralow-density (ULD) particles during the waterdrive channel adjustment of the Tahe carbonate fractured-vuggy reservoir. The mass, momentum, and turbulence equations of the fluid phase were established in Euler coordinates, whereas the particle motion equations were established based on Newton’s second law. The interaction between the ULD particles was described using a soft sphere model, and the water and particle phases were bidirectionally coupled. Meanwhile, virtual experiments were conducted to calibrate the contact parameters of the particles, and parallel plate experiments were performed to validate the model. Using numerical simulations of particle transport behavior in fractures, the process and characteristics of particle transport and placement in fractures are demonstrated, which can be described by the settlement profile angle and equilibrium gap height. According to parameterized simulations, the change law of the settlement profile angle and equilibrium gap height with different parameters such as particle size, pump displacement, and fracture width are demonstrated, which is helpful for the prediction of migration and accumulation of ULD particles in fracture-vuggy reservoirs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
裂缝性Vuggy油藏中超低密度颗粒输运和分布特性的数值研究
基于计算流体力学离散元法(CFD-DEM)模型,建立了一个固液两相流数值模型,研究了塔河碳酸盐岩缝洞油藏水驱通道调整过程中超低密度(ULD)颗粒的输送和沉降规律。流体相的质量、动量和湍流方程是在欧拉坐标系下建立的,而粒子运动方程是基于牛顿第二定律建立的。使用软球模型描述ULD颗粒之间的相互作用,水相和颗粒相是双向耦合的。同时,进行了虚拟实验来校准颗粒的接触参数,并进行了平行板实验来验证模型。通过对裂缝中颗粒传输行为的数值模拟,展示了颗粒在裂缝中传输和放置的过程和特征,可以用沉降剖面角和平衡间隙高度来描述。通过参数化模拟,揭示了沉降剖面角和平衡间隙高度在粒径、泵排量和裂缝宽度等不同参数下的变化规律,有助于预测缝洞储层中ULD颗粒的迁移和聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spe Production & Operations
Spe Production & Operations 工程技术-工程:石油
CiteScore
3.70
自引率
8.30%
发文量
54
审稿时长
3 months
期刊介绍: SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.
期刊最新文献
Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1