{"title":"Improving multi-class EEG-motor imagery classification using two-stage detection on one-versus-one approach","authors":"A. Wijaya, T. B. Adji, N. A. Setiawan","doi":"10.21924/cst.5.2.2020.216","DOIUrl":null,"url":null,"abstract":"The multi-class motor imagery based on Electroencephalogram (EEG) signals in Brain-Computer Interface (BCI) systems still face challenges, such as inconsistent accuracy and low classification performance due to inter-subject dependent. Therefore, this study aims to improve multi-class EEG-motor imagery using two-stage detection and voting scheme on one-versus-one approach. The EEG signal used to carry out this research was extracted through a statistical measure of narrow window sliding. Furthermore, inter and cross-subject schemes were investigated on BCI competition IV-Dataset 2a to evaluate the effectiveness of the proposed method. The experimental results showed that the proposed method produced enhanced inter and cross-subject kappa coefficient values of 0.78 and 0.68, respectively, with a low standard deviation of 0.1 for both schemes. These results further indicated that the proposed method has an ability to address inter-subject dependent for promising and reliable BCI systems.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.5.2.2020.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
The multi-class motor imagery based on Electroencephalogram (EEG) signals in Brain-Computer Interface (BCI) systems still face challenges, such as inconsistent accuracy and low classification performance due to inter-subject dependent. Therefore, this study aims to improve multi-class EEG-motor imagery using two-stage detection and voting scheme on one-versus-one approach. The EEG signal used to carry out this research was extracted through a statistical measure of narrow window sliding. Furthermore, inter and cross-subject schemes were investigated on BCI competition IV-Dataset 2a to evaluate the effectiveness of the proposed method. The experimental results showed that the proposed method produced enhanced inter and cross-subject kappa coefficient values of 0.78 and 0.68, respectively, with a low standard deviation of 0.1 for both schemes. These results further indicated that the proposed method has an ability to address inter-subject dependent for promising and reliable BCI systems.