GA evolved CGP configuration data for digital circuit design on embryonic architecture

Gayatri Malhotra, P. Duraiswamy
{"title":"GA evolved CGP configuration data for digital circuit design on embryonic architecture","authors":"Gayatri Malhotra, P. Duraiswamy","doi":"10.3233/his-230012","DOIUrl":null,"url":null,"abstract":"Embryonic architecture that carries self-evolving design with fault tolerant feature is proposed for deep space missions. Fault tolerance is achieved in the embryonic architecture due to its homogeneous structure. The cloning of configuration data or genome data to all the embryonic cells makes each cell capable of selecting required cell function using selective gene. The primary digital circuits of avionics are implemented on the fabric, where the configuration data in Cartesian Genetic Programming (CGP) format is evolved through customized GA. The CGP format is preferred over LUT format for the circuit configuration data due to its fixed data size in case of modular design. Further the CGP format enables fault detection at embryonic cell level as well as logic gate level. The various combinational and sequential circuits like adder, comparator, multiplier, register and counter are designed and implemented on embryonic fabric using Verilog. The circuit performance is evaluated using simulation. The proposed PHsClone genetic algorithm (GA) design with parallel-pipeline approach is to achieve faster convergence. Four concurrent PHsClone GA executions (four parallel threads) achieve convergence for the 10 times faster for a 1-bit adder, and 3 times faster for a 2-bit comparator.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-230012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Embryonic architecture that carries self-evolving design with fault tolerant feature is proposed for deep space missions. Fault tolerance is achieved in the embryonic architecture due to its homogeneous structure. The cloning of configuration data or genome data to all the embryonic cells makes each cell capable of selecting required cell function using selective gene. The primary digital circuits of avionics are implemented on the fabric, where the configuration data in Cartesian Genetic Programming (CGP) format is evolved through customized GA. The CGP format is preferred over LUT format for the circuit configuration data due to its fixed data size in case of modular design. Further the CGP format enables fault detection at embryonic cell level as well as logic gate level. The various combinational and sequential circuits like adder, comparator, multiplier, register and counter are designed and implemented on embryonic fabric using Verilog. The circuit performance is evaluated using simulation. The proposed PHsClone genetic algorithm (GA) design with parallel-pipeline approach is to achieve faster convergence. Four concurrent PHsClone GA executions (four parallel threads) achieve convergence for the 10 times faster for a 1-bit adder, and 3 times faster for a 2-bit comparator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传算法将CGP组态数据演化为基于胚胎结构的数字电路设计
针对深空任务,提出了一种具有容错功能的胚胎结构,该结构具有自进化设计。容错是在胚胎结构中实现的,因为它的结构是均匀的。将配置数据或基因组数据克隆到所有胚胎细胞使得每个细胞能够使用选择性基因来选择所需的细胞功能。航空电子设备的主要数字电路在结构上实现,其中笛卡尔遗传规划(CGP)格式的配置数据是通过定制GA进化而来的。电路配置数据首选CGP格式,而不是LUT格式,因为在模块化设计的情况下,CGP格式的数据大小是固定的。此外,CGP格式使得能够在胚胎细胞级别以及逻辑门级别进行故障检测。利用Verilog设计并实现了各种组合和时序电路,如加法器、比较器、乘法器、寄存器和计数器。使用仿真来评估电路性能。所提出的PHsClone遗传算法(GA)设计采用并行流水线的方法是为了实现更快的收敛。四个并发的PHsClone GA执行(四个并行线程)实现了收敛,1位加法器快10倍,2位比较器快3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Vision transformer-convolution for breast cancer classification using mammography images: A comparative study Comparative temporal dynamics of individuation and perceptual averaging using a biological neural network model Metaheuristic optimized electrocardiography time-series anomaly classification with recurrent and long-short term neural networks Classifications, evaluation metrics, datasets, and domains in recommendation services: A survey A hybrid approach of machine learning algorithms for improving accuracy of social media crisis detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1