Nicholas T. Homziak, Caroline G. Storer, Lawrence F. Gall, Robert J. Borth, Akito Y. Kawahara
{"title":"Phylogenomics resolves major relationships of Catocala underwing moths","authors":"Nicholas T. Homziak, Caroline G. Storer, Lawrence F. Gall, Robert J. Borth, Akito Y. Kawahara","doi":"10.1111/syen.12595","DOIUrl":null,"url":null,"abstract":"<p>Underwing moths in the genus <i>Catocala</i> Schrank are among the most charismatic of Lepidoptera. <i>Catocala</i> is also one of the most diverse genera worldwide in the speciose family Erebidae, but a phylogenetic framework for the genus is lacking. Here we reconstruct the first comprehensive molecular phylogeny for the genus based on 685 anchored hybrid enrichment loci sampled from 161 <i>Catocala</i> species (99 Nearctic, 62 Palearctic), four species of <i>Ulotrichopus</i> Wallengren and 33 outgroups. Phylogenetic analysis unambiguously recovers <i>Catocala</i> and <i>Catocala</i> + <i>Ulotrichopus</i> as monophyletic with strong support and resolves many backbone relationships within <i>Catocala.</i> Our results confirm the classification of previously proposed taxonomic subgroups of <i>Catocala</i>, including seven based on recent molecular/morphological evidence, and ten based on early twentieth-century morphological research. Mapping of larval host plant use onto the tree shows Fabaceae to be the likely ancestral host plant family for <i>Catocala</i> and <i>Catocala</i> + <i>Ulotrichopus</i>. There appear to have been at least 18 independent larval host plant shifts to nine plant families, the most common shift being from Fabaceae to Fagaceae. Larval host plant use has likely played an important role in the evolutionary history of <i>Catocala</i>, with several rapid diversification events propelled by shifts to novel larval host plants, particularly in the North American <i>Catocala</i> fauna.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"633-643"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12595","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Underwing moths in the genus Catocala Schrank are among the most charismatic of Lepidoptera. Catocala is also one of the most diverse genera worldwide in the speciose family Erebidae, but a phylogenetic framework for the genus is lacking. Here we reconstruct the first comprehensive molecular phylogeny for the genus based on 685 anchored hybrid enrichment loci sampled from 161 Catocala species (99 Nearctic, 62 Palearctic), four species of Ulotrichopus Wallengren and 33 outgroups. Phylogenetic analysis unambiguously recovers Catocala and Catocala + Ulotrichopus as monophyletic with strong support and resolves many backbone relationships within Catocala. Our results confirm the classification of previously proposed taxonomic subgroups of Catocala, including seven based on recent molecular/morphological evidence, and ten based on early twentieth-century morphological research. Mapping of larval host plant use onto the tree shows Fabaceae to be the likely ancestral host plant family for Catocala and Catocala + Ulotrichopus. There appear to have been at least 18 independent larval host plant shifts to nine plant families, the most common shift being from Fabaceae to Fagaceae. Larval host plant use has likely played an important role in the evolutionary history of Catocala, with several rapid diversification events propelled by shifts to novel larval host plants, particularly in the North American Catocala fauna.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.