Spectra and crystallographic analysis of combined ultrasonic and mild acid hydrolysis structural effects on lignin-containing cellulose nanofibrils (LCNFs) and cellulose nanofibrils (CNFs)
C. Ewulonu, Hongkun Wang, Xuran Liu, Min Wu, Yong Huang
{"title":"Spectra and crystallographic analysis of combined ultrasonic and mild acid hydrolysis structural effects on lignin-containing cellulose nanofibrils (LCNFs) and cellulose nanofibrils (CNFs)","authors":"C. Ewulonu, Hongkun Wang, Xuran Liu, Min Wu, Yong Huang","doi":"10.1080/02773813.2022.2036195","DOIUrl":null,"url":null,"abstract":"Abstract Cellulose nanofibrils (CNFs) and lignin-containing cellulose nanofibrils (LCNFs) have been isolated from sunflower stalks through varying mechano-chemical process. The processing conditions were used to evaluate the structural differences between CNFs and LCNFs. This study has been able to establish that outside the strong lignin aromatic bands found in the FT-IR finger-print region of the LCNF, the CNF, LCNF, and the acid hydrolyzed samples (aCNF and aLCNF) possess same chemical structures. They however exhibited varying crystal systems with LCNF and aLCNF showing monoclinic and orthorhombic structures respectively, while CNF and aCNF were tetragonal and orthorhombic. The average crystallite size calculated from the XRD analysis shows that the lignin containing samples are larger in size (4.08 nm to 5.36 nm) than other samples (2.03 nm to 2.52 nm) while the average AFM heights of all samples ranged from 12 nm to 35 nm. The ultrasonic treatment was observed to have adversely affected the XRD crystallinity index of the cellulose nanofibril samples while improving that of lignin-containing samples. This underscores the importance of understanding the compromise to be established between structure and size in the fabrication of cellulose nanomaterials. This work has shown that despite the varying processing conditions and fiber components of the nanocellulose, they maintained similar FT-IR crystallinity ratios and crystalline structure meaning that LCNF can complement CNF where its properties supersedes and vice versa.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"42 1","pages":"125 - 135"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2022.2036195","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Cellulose nanofibrils (CNFs) and lignin-containing cellulose nanofibrils (LCNFs) have been isolated from sunflower stalks through varying mechano-chemical process. The processing conditions were used to evaluate the structural differences between CNFs and LCNFs. This study has been able to establish that outside the strong lignin aromatic bands found in the FT-IR finger-print region of the LCNF, the CNF, LCNF, and the acid hydrolyzed samples (aCNF and aLCNF) possess same chemical structures. They however exhibited varying crystal systems with LCNF and aLCNF showing monoclinic and orthorhombic structures respectively, while CNF and aCNF were tetragonal and orthorhombic. The average crystallite size calculated from the XRD analysis shows that the lignin containing samples are larger in size (4.08 nm to 5.36 nm) than other samples (2.03 nm to 2.52 nm) while the average AFM heights of all samples ranged from 12 nm to 35 nm. The ultrasonic treatment was observed to have adversely affected the XRD crystallinity index of the cellulose nanofibril samples while improving that of lignin-containing samples. This underscores the importance of understanding the compromise to be established between structure and size in the fabrication of cellulose nanomaterials. This work has shown that despite the varying processing conditions and fiber components of the nanocellulose, they maintained similar FT-IR crystallinity ratios and crystalline structure meaning that LCNF can complement CNF where its properties supersedes and vice versa.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.