Comparing cyclic behaviour of RBS, DFC and proposed rigid connections in a steel moment frame with CFT column

IF 1.6 Q3 ENGINEERING, CIVIL Australian Journal of Civil Engineering Pub Date : 2020-12-18 DOI:10.1080/14488353.2020.1854941
Ali Parvari, S. M. Zahrai, S. M. Mirhosseini, E. Zeighami
{"title":"Comparing cyclic behaviour of RBS, DFC and proposed rigid connections in a steel moment frame with CFT column","authors":"Ali Parvari, S. M. Zahrai, S. M. Mirhosseini, E. Zeighami","doi":"10.1080/14488353.2020.1854941","DOIUrl":null,"url":null,"abstract":"ABSTRACT Beam-to-column connection is one of the main parts of steel structures that its failure induces local and/or overall structural failure. This paper aims at examining the impact of different rigid connections (including conventional, reduced beam section (RBS), drilled flange connection (DFC), those stiffened with exchangeable box components and variable-diameter DFC with concrete-filled box columns on the flexural behavior of a steel moment frames. A rhombic connection with a cutting vector pattern like RBS is designed and proposed; then its behavior is compared to those of RBS and DFC connections. The connections are modeled in Abaqus software and then their moment-rotation diagrams are plotted and compared. The results reveal that the DFC connection with holes of different diameters has proper energy absorption and performance. In conclusion, the rhombus DFC connection has a more reliable performance than other DFC connections. In this research, by placing the proposed stiffening components in the connection, it is observed that these components act as dampers increasing the bearing capacity and improve the connection behavior by absorbing the imposed energy. The results indicate that the proposed connection prevents from beam failure as most of input energy is absorbed by the proposed components.","PeriodicalId":44354,"journal":{"name":"Australian Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14488353.2020.1854941","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14488353.2020.1854941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Beam-to-column connection is one of the main parts of steel structures that its failure induces local and/or overall structural failure. This paper aims at examining the impact of different rigid connections (including conventional, reduced beam section (RBS), drilled flange connection (DFC), those stiffened with exchangeable box components and variable-diameter DFC with concrete-filled box columns on the flexural behavior of a steel moment frames. A rhombic connection with a cutting vector pattern like RBS is designed and proposed; then its behavior is compared to those of RBS and DFC connections. The connections are modeled in Abaqus software and then their moment-rotation diagrams are plotted and compared. The results reveal that the DFC connection with holes of different diameters has proper energy absorption and performance. In conclusion, the rhombus DFC connection has a more reliable performance than other DFC connections. In this research, by placing the proposed stiffening components in the connection, it is observed that these components act as dampers increasing the bearing capacity and improve the connection behavior by absorbing the imposed energy. The results indicate that the proposed connection prevents from beam failure as most of input energy is absorbed by the proposed components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有CFT柱的钢框架中RBS、DFC和拟议刚性连接的循环性能比较
梁柱连接是钢结构的主要组成部分之一,它的破坏会引起结构的局部或整体破坏。本文旨在研究不同刚性连接(包括传统的简化梁截面(RBS)、钻孔法兰连接(DFC)、可交换箱形构件加筋连接和带混凝土填充箱形柱的变直径DFC连接)对钢弯矩框架抗弯性能的影响。设计并提出了一种具有切割矢量模式的菱形连接;然后将其行为与RBS和DFC连接的行为进行比较。在Abaqus软件中对连接进行建模,然后绘制和比较它们的力矩旋转图。结果表明,不同孔径的DFC连接具有较好的吸能性能。综上所述,菱形DFC连接比其他DFC连接具有更可靠的性能。在本研究中,通过在连接中放置所提出的加劲组件,观察到这些组件作为阻尼器,通过吸收施加的能量来增加承载能力并改善连接性能。结果表明,由于输入能量的大部分被所提出的组件吸收,所提出的连接可以防止光束破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
7.70%
发文量
31
期刊最新文献
Degradation of RC short beams under monotonic and repeated loads after cryogenic freeze-thaw cycles Mechanical properties of on-site manufactured stabilised compressed earth blocks: an experimental investigation and proposed models Microcosmic mechanism of asphalt-aggregate interface adhesion failure under freeze-thaw cycles based on molecular dynamics Microcosmic mechanism of PE modified asphalt based on molecular simulation Study on the interlayer critical response of asphalt pavement with different paving methods based on cohesive zone model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1