A review of h‐likelihood and hierarchical generalized linear model

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-08-25 DOI:10.1002/wics.1527
Shaobo Jin, Youngjo Lee
{"title":"A review of h‐likelihood and hierarchical generalized linear model","authors":"Shaobo Jin, Youngjo Lee","doi":"10.1002/wics.1527","DOIUrl":null,"url":null,"abstract":"Fisher's classical likelihood has become the standard procedure to make inference for fixed unknown parameters. Recently, inferences of unobservable random variables, such as random effects, factors, missing values, etc., have become important in statistical analysis. Because Fisher's likelihood cannot have such unobservable random variables, the full Bayesian method is only available for inference. An alternative likelihood approach is proposed by Lee and Nelder. In the context of Fisher likelihood, the likelihood principle means that the likelihood function carries all relevant information regarding the fixed unknown parameters. Bjørnstad extended the likelihood principle to extended likelihood principle; all information in the observed data for fixed unknown parameters and unobservables are in the extended likelihood, such as the h‐likelihood. However, it turns out that the use of extended likelihood for inferences is not as straightforward as the Fisher likelihood. In this paper, we describe how to extract information of the data from the h‐likelihood. This provides a new way of statistical inferences in entire fields of statistical science.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1527","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

Abstract

Fisher's classical likelihood has become the standard procedure to make inference for fixed unknown parameters. Recently, inferences of unobservable random variables, such as random effects, factors, missing values, etc., have become important in statistical analysis. Because Fisher's likelihood cannot have such unobservable random variables, the full Bayesian method is only available for inference. An alternative likelihood approach is proposed by Lee and Nelder. In the context of Fisher likelihood, the likelihood principle means that the likelihood function carries all relevant information regarding the fixed unknown parameters. Bjørnstad extended the likelihood principle to extended likelihood principle; all information in the observed data for fixed unknown parameters and unobservables are in the extended likelihood, such as the h‐likelihood. However, it turns out that the use of extended likelihood for inferences is not as straightforward as the Fisher likelihood. In this paper, we describe how to extract information of the data from the h‐likelihood. This provides a new way of statistical inferences in entire fields of statistical science.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
h‐似然和层次广义线性模型综述
Fisher的经典似然已经成为对固定未知参数进行推理的标准程序。最近,对不可观测的随机变量的推断,如随机效应、因素、缺失值等,在统计分析中变得很重要。由于Fisher似然不可能有这样不可观测的随机变量,因此全贝叶斯方法只能用于推理。Lee和Nelder提出了另一种可能性方法。在Fisher似然的上下文中,似然原理意味着似然函数携带关于固定未知参数的所有相关信息。Bjørnstad将似然原理扩展为扩展似然原理;对于固定的未知参数和不可观测值,观测数据中的所有信息都具有扩展似然性,如h似然性。然而,事实证明,使用扩展似然进行推断并不像Fisher似然那样简单。在本文中,我们描述了如何从h‐似然中提取数据的信息。这为整个统计科学领域的统计推断提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1