Marleen R. Lam, A. Matanó, A. V. van Loon, Rhoda A. Odongo, A. Teklesadik, C. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, A. Teuling
{"title":"Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya","authors":"Marleen R. Lam, A. Matanó, A. V. van Loon, Rhoda A. Odongo, A. Teklesadik, C. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, A. Teuling","doi":"10.5194/nhess-23-2915-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The relation between drought severity and drought impacts is complex and relatively unexplored in the African continent. This study assesses the relation between reported drought impacts, drought indices, water scarcity and aridity across several counties in Kenya. The monthly bulletins of the National Drought Management Authority in Kenya provided drought impact data. A random forest (RF) model was used to explore which set of drought indices (standardized precipitation index, standardized precipitation evapotranspiration index, standardized soil moisture index and standardized streamflow index) best explains drought impacts on pasture, livestock deaths, milk production, crop losses, food insecurity, trekking distance for water and malnutrition. The findings of this study suggest a relation between drought severity and the frequency of drought impacts, whereby the latter also showed a positive relation with aridity. A relation between water scarcity and aridity was not found. The RF model revealed that every region, aggregated by aridity, had their own set of predictors for every impact category. Longer timescales (≥ 12 months) and the standardized streamflow index were strongly represented in the list of predictors, indicating the importance of hydrological drought to predict drought impact occurrences. This study highlights the potential of linking drought indices with text-based impact reports while acknowledging that the findings strongly depend on the availability of drought impact data. Moreover, it emphasizes the importance of considering spatial differences in aridity, water scarcity and socio-economic conditions within a region when exploring the relationships between drought impacts and indices.\n","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/nhess-23-2915-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The relation between drought severity and drought impacts is complex and relatively unexplored in the African continent. This study assesses the relation between reported drought impacts, drought indices, water scarcity and aridity across several counties in Kenya. The monthly bulletins of the National Drought Management Authority in Kenya provided drought impact data. A random forest (RF) model was used to explore which set of drought indices (standardized precipitation index, standardized precipitation evapotranspiration index, standardized soil moisture index and standardized streamflow index) best explains drought impacts on pasture, livestock deaths, milk production, crop losses, food insecurity, trekking distance for water and malnutrition. The findings of this study suggest a relation between drought severity and the frequency of drought impacts, whereby the latter also showed a positive relation with aridity. A relation between water scarcity and aridity was not found. The RF model revealed that every region, aggregated by aridity, had their own set of predictors for every impact category. Longer timescales (≥ 12 months) and the standardized streamflow index were strongly represented in the list of predictors, indicating the importance of hydrological drought to predict drought impact occurrences. This study highlights the potential of linking drought indices with text-based impact reports while acknowledging that the findings strongly depend on the availability of drought impact data. Moreover, it emphasizes the importance of considering spatial differences in aridity, water scarcity and socio-economic conditions within a region when exploring the relationships between drought impacts and indices.
期刊介绍:
Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.