Felix Jimenez, Amanda Koepke, Mary Gregg, Michael Frey
{"title":"Generative Adversarial Network Performance in Low-Dimensional Settings.","authors":"Felix Jimenez, Amanda Koepke, Mary Gregg, Michael Frey","doi":"10.6028/jres.126.008","DOIUrl":null,"url":null,"abstract":"<p><p>A generative adversarial network (GAN) is an artifcial neural network with a distinctive training architecture, designed to create examples that faithfully reproduce a target distribution. GANs have recently had particular success in applications involving high-dimensional distributions in areas such as image processing. Little work has been reported for low dimensions, where properties of GANs may be better identifed and understood. We studied GAN performance in simulated low-dimensional settings, allowing us to transparently assess effects of target distribution complexity and training data sample size on GAN performance in a simple experiment. This experiment revealed two important forms of GAN error, tail underflling and bridge bias, where the latter is analogous to the tunneling observed in high-dimensional GANs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"126008"},"PeriodicalIF":17.7000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.126.008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A generative adversarial network (GAN) is an artifcial neural network with a distinctive training architecture, designed to create examples that faithfully reproduce a target distribution. GANs have recently had particular success in applications involving high-dimensional distributions in areas such as image processing. Little work has been reported for low dimensions, where properties of GANs may be better identifed and understood. We studied GAN performance in simulated low-dimensional settings, allowing us to transparently assess effects of target distribution complexity and training data sample size on GAN performance in a simple experiment. This experiment revealed two important forms of GAN error, tail underflling and bridge bias, where the latter is analogous to the tunneling observed in high-dimensional GANs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.