M. A. U. Rehman, M. A. U. Rehman, Qian Chen, A. Braem, M. Shaffer, A. Boccaccini
{"title":"Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges","authors":"M. A. U. Rehman, M. A. U. Rehman, Qian Chen, A. Braem, M. Shaffer, A. Boccaccini","doi":"10.1080/09506608.2020.1831299","DOIUrl":null,"url":null,"abstract":"ABSTRACT Electrophoretic deposition (EPD) is a powerful technique to assemble carbon nanotube (CNT) coatings and composite films with controlled architectures. This comprehensive review of the EPD of CNTs and CNT-containing composites focuses on achievements within the last 15 years and ongoing challenges. Stable CNT suspensions are a pre-requisite for successful EPD and have been prepared by a variety of strategies, discussed here. The resulting film microstructure is determined by the initial feedstock, the suspension, and the EPD approach applied, as well as a variety of EPD processing parameters. Nanocomposites can be prepared via co-deposition, sequential deposition, or post-deposition treatments, to introduce metallic, ceramic or polymeric phases. There are numerous potential applications for both homogeneous and patterned CNT films, including as structural reinforcements for composites, as field emission, energy storage and conversion devices, as well as in biomedical applications. The advantages and disadvantages of EPD processing in these contexts are discussed.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"533 - 562"},"PeriodicalIF":16.8000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1831299","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1831299","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 49
Abstract
ABSTRACT Electrophoretic deposition (EPD) is a powerful technique to assemble carbon nanotube (CNT) coatings and composite films with controlled architectures. This comprehensive review of the EPD of CNTs and CNT-containing composites focuses on achievements within the last 15 years and ongoing challenges. Stable CNT suspensions are a pre-requisite for successful EPD and have been prepared by a variety of strategies, discussed here. The resulting film microstructure is determined by the initial feedstock, the suspension, and the EPD approach applied, as well as a variety of EPD processing parameters. Nanocomposites can be prepared via co-deposition, sequential deposition, or post-deposition treatments, to introduce metallic, ceramic or polymeric phases. There are numerous potential applications for both homogeneous and patterned CNT films, including as structural reinforcements for composites, as field emission, energy storage and conversion devices, as well as in biomedical applications. The advantages and disadvantages of EPD processing in these contexts are discussed.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.