{"title":"A mathematical model which examines age-related stochastic fluctuations in DNA maintenance methylation","authors":"L. Zagkos, Jason Roberts, M. M. Auley","doi":"10.1101/2021.02.05.429896","DOIUrl":null,"url":null,"abstract":"Due to its complexity and its ubiquitous nature the ageing process remains an enduring biological puzzle. Many molecular mechanisms and biochemical process have become synonymous with ageing. However, recent findings have pinpointed epigenetics as having a key role in ageing and healthspan. In particular age related changes to DNA methylation offer the possibility of monitoring the trajectory of biological ageing and could even be used to predict the onset of diseases such as cancer, Alzheimer’s disease and cardiovascular disease. At the molecular level emerging evidence strongly suggests the regulatory processes which govern DNA methylation are subject to intracellular stochasticity. It is challenging to fully understand the impact of stochasticity on DNA methylation levels at the molecular level experimentally. An ideal solution is to use mathematical models to capture the essence of the stochasticity and its outcomes. In this paper we present a novel stochastic model which accounts for specific methylation levels within a gene promoter. We quantify the uncertainty of the eventual cite-specific methylation levels for different values of methylation age, depending on the initial methylation levels. Our model predicts the observed bistable levels in CpG islands. In addition, simulations with various levels of noise indicate that uncertainty predominantly spreads through the hypermethylated region of stability, especially for large values of input noise. A key outcome of the model is that CpG islands with intermediate methylation levels tend to be more susceptible to dramatic DNA methylation changes towards both hypomethylation and hypermethylation, due to increasing methylation age.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/2021.02.05.429896","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
Due to its complexity and its ubiquitous nature the ageing process remains an enduring biological puzzle. Many molecular mechanisms and biochemical process have become synonymous with ageing. However, recent findings have pinpointed epigenetics as having a key role in ageing and healthspan. In particular age related changes to DNA methylation offer the possibility of monitoring the trajectory of biological ageing and could even be used to predict the onset of diseases such as cancer, Alzheimer’s disease and cardiovascular disease. At the molecular level emerging evidence strongly suggests the regulatory processes which govern DNA methylation are subject to intracellular stochasticity. It is challenging to fully understand the impact of stochasticity on DNA methylation levels at the molecular level experimentally. An ideal solution is to use mathematical models to capture the essence of the stochasticity and its outcomes. In this paper we present a novel stochastic model which accounts for specific methylation levels within a gene promoter. We quantify the uncertainty of the eventual cite-specific methylation levels for different values of methylation age, depending on the initial methylation levels. Our model predicts the observed bistable levels in CpG islands. In addition, simulations with various levels of noise indicate that uncertainty predominantly spreads through the hypermethylated region of stability, especially for large values of input noise. A key outcome of the model is that CpG islands with intermediate methylation levels tend to be more susceptible to dramatic DNA methylation changes towards both hypomethylation and hypermethylation, due to increasing methylation age.