Sensitizing Social Interaction with a Mode-Enhanced Transcribing Process

IF 8.9 2区 管理学 Q1 MANAGEMENT Organizational Research Methods Pub Date : 2022-10-31 DOI:10.1177/10944281221134096
Qian Li
{"title":"Sensitizing Social Interaction with a Mode-Enhanced Transcribing Process","authors":"Qian Li","doi":"10.1177/10944281221134096","DOIUrl":null,"url":null,"abstract":"Qualitative researchers often work with texts transcribed from social interactions such as interviews, meetings, and presentations. However, how we make sense of such data to generate promising cues for further analysis is rarely discussed. This article proposes mode-enhanced transcription as a tool for sensitizing social interaction data, defined as a process in which researchers attune their attention to the dynamic interplay of verbal and nonverbal features, expressions, and acts when transcribing and proofreading professional transcripts. Two scenarios for using mode-enhanced transcription are introduced: sensitizing previously collected data and engaging with modes purposefully. Their implications for research focus, data collection, and data analysis are discussed based on a demonstration of the process with a previously collected dataset and an illustrative review of published articles that display mode-enhanced excerpts. The article outlines the benefits and further considerations of using mode-enhanced transcription as a sensitizing tool.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281221134096","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Qualitative researchers often work with texts transcribed from social interactions such as interviews, meetings, and presentations. However, how we make sense of such data to generate promising cues for further analysis is rarely discussed. This article proposes mode-enhanced transcription as a tool for sensitizing social interaction data, defined as a process in which researchers attune their attention to the dynamic interplay of verbal and nonverbal features, expressions, and acts when transcribing and proofreading professional transcripts. Two scenarios for using mode-enhanced transcription are introduced: sensitizing previously collected data and engaging with modes purposefully. Their implications for research focus, data collection, and data analysis are discussed based on a demonstration of the process with a previously collected dataset and an illustrative review of published articles that display mode-enhanced excerpts. The article outlines the benefits and further considerations of using mode-enhanced transcription as a sensitizing tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用模式增强转录过程使社会互动敏感化
定性研究人员经常使用从访谈、会议和演讲等社会互动中转录的文本。然而,我们如何理解这些数据,为进一步分析提供有希望的线索,却很少被讨论。本文提出模式增强转录作为敏感社会互动数据的工具,定义为一个过程,在这个过程中,研究人员在转录和校对专业成绩单时,将他们的注意力调整到语言和非语言特征、表情和行为的动态相互作用上。介绍了使用模式增强转录的两种情况:敏感化以前收集的数据和有目的地参与模式。它们对研究重点、数据收集和数据分析的影响是基于先前收集的数据集的过程演示和对显示模式增强摘录的已发表文章的说明性回顾来讨论的。文章概述了使用模式增强转录作为增敏工具的好处和进一步的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.20
自引率
3.20%
发文量
17
期刊介绍: Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.
期刊最新文献
The Internet Never Forgets: A Four-Step Scraping Tutorial, Codebase, and Database for Longitudinal Organizational Website Data One Size Does Not Fit All: Unraveling Item Response Process Heterogeneity Using the Mixture Dominance-Unfolding Model (MixDUM) Taking It Easy: Off-the-Shelf Versus Fine-Tuned Supervised Modeling of Performance Appraisal Text Hello World! Building Computational Models to Represent Social and Organizational Theory The Effects of the Training Sample Size, Ground Truth Reliability, and NLP Method on Language-Based Automatic Interview Scores’ Psychometric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1