Efficient Methods for Natural Language Processing: A Survey

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Transactions of the Association for Computational Linguistics Pub Date : 2022-08-31 DOI:10.1162/tacl_a_00577
Marcos Vinícius Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael Hassid, Kenneth Heafield, Sara Hooker, Pedro Henrique Martins, André F. T. Martins, Peter Milder, Colin Raffel, Edwin Simpson, N. Slonim, Niranjan Balasubramanian, Leon Derczynski, Roy Schwartz
{"title":"Efficient Methods for Natural Language Processing: A Survey","authors":"Marcos Vinícius Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael Hassid, Kenneth Heafield, Sara Hooker, Pedro Henrique Martins, André F. T. Martins, Peter Milder, Colin Raffel, Edwin Simpson, N. Slonim, Niranjan Balasubramanian, Leon Derczynski, Roy Schwartz","doi":"10.1162/tacl_a_00577","DOIUrl":null,"url":null,"abstract":"Abstract Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"826-860"},"PeriodicalIF":4.2000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00577","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 38

Abstract

Abstract Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然语言处理的有效方法综述
近年来,自然语言处理(NLP)在缩放模型参数和训练数据方面取得了引人注目的成果;但是,仅使用扩展来提高性能意味着资源消耗也会增加。这些资源包括数据、时间、存储或能量,所有这些资源自然都是有限的,而且分布不均。这促使人们研究需要更少资源来获得类似结果的有效方法。本调查综合并联系了高效自然语言处理的现有方法和发现。我们的目标是为在有限资源下进行自然语言处理提供指导,并为开发更有效的方法指出有希望的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
期刊最新文献
General then Personal: Decoupling and Pre-training for Personalized Headline Generation MissModal: Increasing Robustness to Missing Modality in Multimodal Sentiment Analysis Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations An Efficient Self-Supervised Cross-View Training For Sentence Embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1