Biogenic synthesis of Fe3O4/NiO nanocomposites using Ocimum basilicum leaves for enhanced degradation of organic dyes and hydrogen evolution

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Porous Materials Pub Date : 2023-08-24 DOI:10.1007/s10934-023-01509-0
Laouini Salah Eddine, Hamdi Ali Mohammed, Chaima Salmi, Meneceur Souhaila, Gamil Gamal Hasan, Fahad Alharthi, Johar Amin Ahmed Abdullah
{"title":"Biogenic synthesis of Fe3O4/NiO nanocomposites using Ocimum basilicum leaves for enhanced degradation of organic dyes and hydrogen evolution","authors":"Laouini Salah Eddine,&nbsp;Hamdi Ali Mohammed,&nbsp;Chaima Salmi,&nbsp;Meneceur Souhaila,&nbsp;Gamil Gamal Hasan,&nbsp;Fahad Alharthi,&nbsp;Johar Amin Ahmed Abdullah","doi":"10.1007/s10934-023-01509-0","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to explore the utilization of <i>Ocimum basilicum</i> leaf extract as a green and sustainable method for the synthesis of Fe<sub>3</sub>O<sub>4</sub>/NiO nanocomposites (Fe<sub>3</sub>O<sub>4</sub>/NiO NC) with potential applications in photocatalytic hydrogen evolution and organic dye degradation. The synthesized Fe<sub>3</sub>O<sub>4</sub>/NiO NC exhibited a unique bandgap energy of 2 eV, making it an effective visible-light photocatalyst. X-ray diffraction and scanning electron microscopy confirmed the successful formation of the cubic crystal structure with an average crystallite size of 25.7 nm. Fourier transform infrared spectroscopy analysis revealed the presence of hydroxyl groups on the NC surface, which contributed to its photocatalytic properties. Under sunlight exposure, the Fe<sub>3</sub>O<sub>4</sub>/NiO NC demonstrated remarkable photocatalytic degradation efficiency of 99.3% for toluidine blue, 99.0% for 4-bromophenol, and 95.0% for methyl blue within 140 min. The photocatalyst also exhibited excellent reusability with only a slight decrease in efficiency after five cycles. Additionally, the Fe<sub>3</sub>O<sub>4</sub>/NiO NC displayed high photocatalytic activity in hydrogen evolution, generating 933.9 µmol/g of H<sub>2</sub> over 8 h at a concentration of 0.7 g/L. This green synthesis approach, utilizing <i>Ocimum basilicum</i> extract, provides a cost-effective and eco-friendly method to produce Fe<sub>3</sub>O<sub>4</sub>/NiO NC with enhanced photocatalytic properties, holding great promise for sustainable energy and water purification applications. The study contributes to the understanding of novel nanocomposites and their potential for addressing urgent environmental challenges, underscoring their scientific value in green chemistry and renewable energy research.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 1","pages":"213 - 226"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-023-01509-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to explore the utilization of Ocimum basilicum leaf extract as a green and sustainable method for the synthesis of Fe3O4/NiO nanocomposites (Fe3O4/NiO NC) with potential applications in photocatalytic hydrogen evolution and organic dye degradation. The synthesized Fe3O4/NiO NC exhibited a unique bandgap energy of 2 eV, making it an effective visible-light photocatalyst. X-ray diffraction and scanning electron microscopy confirmed the successful formation of the cubic crystal structure with an average crystallite size of 25.7 nm. Fourier transform infrared spectroscopy analysis revealed the presence of hydroxyl groups on the NC surface, which contributed to its photocatalytic properties. Under sunlight exposure, the Fe3O4/NiO NC demonstrated remarkable photocatalytic degradation efficiency of 99.3% for toluidine blue, 99.0% for 4-bromophenol, and 95.0% for methyl blue within 140 min. The photocatalyst also exhibited excellent reusability with only a slight decrease in efficiency after five cycles. Additionally, the Fe3O4/NiO NC displayed high photocatalytic activity in hydrogen evolution, generating 933.9 µmol/g of H2 over 8 h at a concentration of 0.7 g/L. This green synthesis approach, utilizing Ocimum basilicum extract, provides a cost-effective and eco-friendly method to produce Fe3O4/NiO NC with enhanced photocatalytic properties, holding great promise for sustainable energy and water purification applications. The study contributes to the understanding of novel nanocomposites and their potential for addressing urgent environmental challenges, underscoring their scientific value in green chemistry and renewable energy research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用罗勒叶生物合成Fe3O4/NiO纳米复合材料增强有机染料降解和析氢
本研究旨在探索利用欧琴紫苏叶提取物作为一种绿色、可持续的方法来合成Fe3O4/NiO纳米复合材料(Fe3O4/NiO NC),该方法在光催化氢气进化和有机染料降解方面具有潜在的应用价值。合成的 Fe3O4/NiO NC 具有 2 eV 的独特带隙能,是一种有效的可见光光催化剂。X 射线衍射和扫描电子显微镜证实了立方晶体结构的成功形成,平均结晶尺寸为 25.7 nm。傅立叶变换红外光谱分析显示,NC 表面存在羟基,这有助于其光催化特性。在阳光照射下,Fe3O4/NiO NC 在 140 分钟内对甲苯胺蓝的光催化降解效率达到 99.3%,对 4-溴苯酚的光催化降解效率达到 99.0%,对甲基蓝的光催化降解效率达到 95.0%。这种光催化剂还具有极佳的重复利用率,在循环 5 次后效率仅略有下降。此外,Fe3O4/NiO NC 在氢气进化方面表现出很高的光催化活性,在浓度为 0.7 克/升的情况下,8 小时可产生 933.9 微摩尔/克的 H2。这种利用欧芹提取物的绿色合成方法提供了一种具有成本效益且环保的方法来生产具有增强光催化性能的 Fe3O4/NiO NC,为可持续能源和水净化应用带来了巨大前景。这项研究有助于了解新型纳米复合材料及其应对紧迫环境挑战的潜力,凸显了其在绿色化学和可再生能源研究中的科学价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
期刊最新文献
Correction: One-step synthesis of CuO/MCM-41 nanocomposites and their application in photocatalytic degradation of dyes Encapsulation of anti-bacterial Piper betle leaf extract in thermo-sensitive and biodegradable chitosan hydrogels: synthesis, characterization and release kinetics Oleic acid decarboxylation to produce C8-C17 alkanes catalyzed by Pt and Ni on a MOF-derived zirconia High performance humidity sensor based on 3-D mesoporous SnO2 derived via nanocasting technique Magnetic nanoparticles modified with layered double hydroxide (Fe3O4/C/CoFe-LDH) as an extremely effective catalyst in the construction of polyhydroquinolines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1