Enhancing Mortality Forecasting through Bivariate Model–Based Ensemble

IF 1.6 Q3 BUSINESS, FINANCE North American Actuarial Journal Pub Date : 2023-03-09 DOI:10.1080/10920277.2023.2167832
L. Diao, Yechao Meng, Chengguo Weng, T. Wirjanto
{"title":"Enhancing Mortality Forecasting through Bivariate Model–Based Ensemble","authors":"L. Diao, Yechao Meng, Chengguo Weng, T. Wirjanto","doi":"10.1080/10920277.2023.2167832","DOIUrl":null,"url":null,"abstract":"We propose a bivariate model–based ensemble (BMBE) method to borrow information from the mortality data of a given pool of auxiliary populations to enhance the mortality forecasting of a target population. The BMBE method establishes a cascade of bivariate mortality models between the target population and each auxiliary population as the base learners. Then it aggregates prediction results from all of the base learners by means of an averaging strategy. Augmented common factor–type and CBD-type bivariate models are applied as the base learners as illustrative examples in the empirical studies with the Human Mortality Database. Empirical results presented in this article confirm the effectiveness of the proposed BMBE method in enhancing mortality prediction. For completeness, we also conduct a synthetic study to illustrate a particular setting for the superior performance of the BMBE method.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2023.2167832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a bivariate model–based ensemble (BMBE) method to borrow information from the mortality data of a given pool of auxiliary populations to enhance the mortality forecasting of a target population. The BMBE method establishes a cascade of bivariate mortality models between the target population and each auxiliary population as the base learners. Then it aggregates prediction results from all of the base learners by means of an averaging strategy. Augmented common factor–type and CBD-type bivariate models are applied as the base learners as illustrative examples in the empirical studies with the Human Mortality Database. Empirical results presented in this article confirm the effectiveness of the proposed BMBE method in enhancing mortality prediction. For completeness, we also conduct a synthetic study to illustrate a particular setting for the superior performance of the BMBE method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于双变量模型的集合增强死亡率预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
期刊最新文献
A Proposed Condition-Based Risk Adjustment System for the Colombian Health Insurance Program Credibility Theory for Variance Premium Principle Discussion on “Sample Size Determination for Credibility Estimation,” by Liang Hong, Volume 26(4) Author’s Reply to Discussion on “Sample Size Determination for Credibility Estimation” Bequests and the Demand for Life Insurance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1