A stochastic data envelopment analysis approach for multi-criteria ABC inventory classification

IF 4 Q2 ENGINEERING, INDUSTRIAL Journal of Industrial and Production Engineering Pub Date : 2022-03-13 DOI:10.1080/21681015.2022.2037761
Mohammad Tavassoli, R. Farzipoor Saen
{"title":"A stochastic data envelopment analysis approach for multi-criteria ABC inventory classification","authors":"Mohammad Tavassoli, R. Farzipoor Saen","doi":"10.1080/21681015.2022.2037761","DOIUrl":null,"url":null,"abstract":"ABSTRACT One of the common methods for classifying inventory items is ABC classification approach. In many cases, the data might be stochastic. In the current study, using stochastic data envelopment analysis model, we present a new approach to categorize inventory items given stochastic data and nature of criteria. Then, a new stochastic mixed integer programming model is proposed to forecast classes of the new inventory items. The proposed stochastic mixed integer programming model does not impose subjective judgment on the classification of inventory items and can be used for multi-group classification. The developed approach can classify inventory items and forecast the class of new items with both qualitative and quantitative criteria. The applicability of developed stochastic data envelopment analysis and stochastic mixed integer programming models is demonstrated by a case study.","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":"39 1","pages":"415 - 429"},"PeriodicalIF":4.0000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2022.2037761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT One of the common methods for classifying inventory items is ABC classification approach. In many cases, the data might be stochastic. In the current study, using stochastic data envelopment analysis model, we present a new approach to categorize inventory items given stochastic data and nature of criteria. Then, a new stochastic mixed integer programming model is proposed to forecast classes of the new inventory items. The proposed stochastic mixed integer programming model does not impose subjective judgment on the classification of inventory items and can be used for multi-group classification. The developed approach can classify inventory items and forecast the class of new items with both qualitative and quantitative criteria. The applicability of developed stochastic data envelopment analysis and stochastic mixed integer programming models is demonstrated by a case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多准则ABC存货分类的随机数据包络分析方法
摘要ABC分类法是存货分类的常用方法之一。在许多情况下,数据可能是随机的。在当前的研究中,使用随机数据包络分析模型,在给定随机数据和准则性质的情况下,我们提出了一种新的方法来对库存项目进行分类。然后,提出了一种新的随机混合整数规划模型来预测新库存项目的类别。所提出的随机混合整数规划模型对库存项目的分类没有主观判断,可以用于多组分类。所开发的方法可以对库存项目进行分类,并通过定性和定量标准预测新项目的类别。通过一个实例验证了随机数据包络分析和随机混合整数规划模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
21
期刊最新文献
Workshop layout optimization method based on sparrow search algorithm: a new approach On the power and robustness of phase I nonparametric Shewhart-type charts using sequential normal scores Sustainable planning and design for eco-industrial parks using integrated multi-objective optimization and fuzzy analytic hierarchy process Analysis of the BP neural network comprehensive competitiveness evaluation model for the development evaluation of B2B E-commerce enterprises Financial management early warning model of enterprise circular economy based on chaotic particle swarm optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1