FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting

Pouneh Nikkhah Bahrami, Umar Iqbal, Zubair Shafiq
{"title":"FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting","authors":"Pouneh Nikkhah Bahrami, Umar Iqbal, Zubair Shafiq","doi":"10.2478/popets-2022-0056","DOIUrl":null,"url":null,"abstract":"Abstract Browser fingerprinting is a stateless tracking technique that aims to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"557 - 577"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract Browser fingerprinting is a stateless tracking technique that aims to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FP-Radar:纵向测量和浏览器指纹的早期检测
浏览器指纹是一种无状态跟踪技术,旨在将多个不同的web api暴露的信息组合在一起,以创建一个唯一的标识符,用于跟踪web上的用户。在过去的十年里,追踪器滥用了几个现有的和新提出的web api来进一步增强浏览器指纹。现有的方法仅限于在特定时间点检测特定的指纹技术。因此,他们无法系统地检测滥用不同web api的新型指纹技术。在本文中,我们提出了FP-Radar,这是一种机器学习方法,它利用过去十年中top-100K网站的web API使用情况的纵向测量来早期检测新的和不断发展的浏览器指纹技术。结果表明,FP-Radar能够早期检测到新引入的已知属性(例如,WebGL, Sensor)以及以前未知的浏览器指纹api(例如,Gamepad, Clipboard)的滥用。据我们所知,FP-Radar是第一个检测到在野外滥用可见性API的短暂指纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Editors' Introduction Compact and Divisible E-Cash with Threshold Issuance On the Robustness of Topics API to a Re-Identification Attack DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection Privacy-Preserving Federated Recurrent Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1