V. Comte, L. Schneider, P. Calanca, V. Zufferey, M. Rebetez
{"title":"Future climatic conditions may threaten adaptation capacities for vineyards along Lake Neuchâtel, Switzerland","authors":"V. Comte, L. Schneider, P. Calanca, V. Zufferey, M. Rebetez","doi":"10.20870/oeno-one.2023.57.2.7194","DOIUrl":null,"url":null,"abstract":"In Switzerland, as elsewhere in the world, climate change is challenging viticulture. Knowledge of the potential impacts is essential for preparing adaptation measures. Two aspects directly impacted by increasing temperatures are the choice of grapevine varieties and the location of vineyards. To help address these impacts, we analysed future trends in two bioclimatic indices, average growing season temperature (GST) and Huglin’s heliothermal index (HI), in the Swiss canton of Neuchâtel. We conducted our analysis based on regional climate change scenarios referring to the emission pathways RCP4.5 and RCP8.5. Under the assumption of RCP8.5, trends in GST and HI indicate that the climate in this region will become too hot for most grapevine varieties currently cultivated, especially Pinot noir. Moreover, adaptation problems under RCP8.5 are expected to originate from an increase in climate extremes in both temperature and precipitation. Results based on RCP4.5 indicate a broader scope for adaptation, as the climate will remain suitable for a larger number of grapevine varieties within the current altitudinal limits of the Neuchâtel vineyards. In theory, an altitudinal shift of Pinot noir would also be possible under this emission pathway. In practice, however, the possibility of establishing vineyards above 600 m would be limited by the presence of protected forests and rocky areas. Our results highlight that vineyards in this region will need important adaptation measures if anthropic greenhouse gas emissions do not decrease rapidly and considerably, limiting the global temperature increase to < 1.5 °C.","PeriodicalId":19510,"journal":{"name":"OENO One","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OENO One","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.20870/oeno-one.2023.57.2.7194","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In Switzerland, as elsewhere in the world, climate change is challenging viticulture. Knowledge of the potential impacts is essential for preparing adaptation measures. Two aspects directly impacted by increasing temperatures are the choice of grapevine varieties and the location of vineyards. To help address these impacts, we analysed future trends in two bioclimatic indices, average growing season temperature (GST) and Huglin’s heliothermal index (HI), in the Swiss canton of Neuchâtel. We conducted our analysis based on regional climate change scenarios referring to the emission pathways RCP4.5 and RCP8.5. Under the assumption of RCP8.5, trends in GST and HI indicate that the climate in this region will become too hot for most grapevine varieties currently cultivated, especially Pinot noir. Moreover, adaptation problems under RCP8.5 are expected to originate from an increase in climate extremes in both temperature and precipitation. Results based on RCP4.5 indicate a broader scope for adaptation, as the climate will remain suitable for a larger number of grapevine varieties within the current altitudinal limits of the Neuchâtel vineyards. In theory, an altitudinal shift of Pinot noir would also be possible under this emission pathway. In practice, however, the possibility of establishing vineyards above 600 m would be limited by the presence of protected forests and rocky areas. Our results highlight that vineyards in this region will need important adaptation measures if anthropic greenhouse gas emissions do not decrease rapidly and considerably, limiting the global temperature increase to < 1.5 °C.
OENO OneAgricultural and Biological Sciences-Food Science
CiteScore
4.40
自引率
13.80%
发文量
85
审稿时长
13 weeks
期刊介绍:
OENO One is a peer-reviewed journal that publishes original research, reviews, mini-reviews, short communications, perspectives and spotlights in the areas of viticulture, grapevine physiology, genomics and genetics, oenology, winemaking technology and processes, wine chemistry and quality, analytical chemistry, microbiology, sensory and consumer sciences, safety and health. OENO One belongs to the International Viticulture and Enology Society - IVES, an academic association dedicated to viticulture and enology.