Internet Traffic Forecasting Model using Self Organizing Map and Support Vector Regression Method

IF 0.2 Q4 ENGINEERING, MULTIDISCIPLINARY Makara Journal of Technology Pub Date : 2018-10-08 DOI:10.7454/MST.V22I2.3351
Enrico Laoh, Fakhrul Agustriwan, Chyntia Megawati, I. Surjandari
{"title":"Internet Traffic Forecasting Model using Self Organizing Map and Support Vector Regression Method","authors":"Enrico Laoh, Fakhrul Agustriwan, Chyntia Megawati, I. Surjandari","doi":"10.7454/MST.V22I2.3351","DOIUrl":null,"url":null,"abstract":"Internet traffic forecasting is one of important aspect in order to fulfill the customer demand. So, the service quality of internet service provider (ISP) can be maintained at the good level. In this study self organizing map (SOM) and support vector regression (SVR) algorithm are used as forecasting method. SOM is first used to decompose the whole historical data of traffic internet into clusters, while SVR is used to build a forecasting model in each cluster. This method is used to forecast ISPs traffic internet in Jakarta and surrounding areas. The result of this study shows that SOM-SVR method gives more accurate result with smaller error value compared to that of the SVR method.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/MST.V22I2.3351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Internet traffic forecasting is one of important aspect in order to fulfill the customer demand. So, the service quality of internet service provider (ISP) can be maintained at the good level. In this study self organizing map (SOM) and support vector regression (SVR) algorithm are used as forecasting method. SOM is first used to decompose the whole historical data of traffic internet into clusters, while SVR is used to build a forecasting model in each cluster. This method is used to forecast ISPs traffic internet in Jakarta and surrounding areas. The result of this study shows that SOM-SVR method gives more accurate result with smaller error value compared to that of the SVR method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自组织映射和支持向量回归方法的网络流量预测模型
网络流量预测是满足用户需求的一个重要方面。因此,互联网服务提供商(ISP)的服务质量可以保持在良好的水平。本研究采用自组织映射(SOM)和支持向量回归(SVR)算法作为预测方法。首先使用SOM将整个交通互联网的历史数据分解成簇,然后使用支持向量回归在每个簇上建立预测模型。该方法用于预测雅加达及周边地区的互联网服务提供商流量。研究结果表明,与SVR方法相比,SOM-SVR方法得到的结果更准确,误差值更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Makara Journal of Technology
Makara Journal of Technology ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
审稿时长
20 weeks
期刊最新文献
Optimization of the Building Envelope and Roof Shading to Reduce the Energy Consumption of College Low-Rise Buildings in Indonesia Briquette of Empty Fruit Bunch Fiber as an Alternative Substitution for Binderless Fuel Methods Heat Transfer Enhancement in Nanofluid Flows Augmented by Magnetic Flux Isolation and Characterization of Caffeine-Degrading Bacteria from Coffee Plantation Areas in Malaysia Effect of Lime Content, Curing Temperature, and Aging Condition on Low-Alkaline Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1