Detection and segmentation of erythrocytes in multispectral label-free blood smear images for automatic cell counting

Q3 Chemistry Journal of Spectral Imaging Pub Date : 2020-09-09 DOI:10.1255/jsi.2020.a10
Solange Doumun, Sophie Dabo, J. Zoueu
{"title":"Detection and segmentation of erythrocytes in multispectral label-free blood smear images for automatic cell counting","authors":"Solange Doumun, Sophie Dabo, J. Zoueu","doi":"10.1255/jsi.2020.a10","DOIUrl":null,"url":null,"abstract":"In this work we propose an efficient approach to image segmentation for multispectral images of unstained blood films and automatic counting of erythrocytes. Our method takes advantage of Beer–Lambert’s law by using, first, a statistical standardisation equation applied to transmittance images, followed by the local adaptive threshold to detect the blood cells and hysteresis contour closing to obtain the complete blood cell boundaries, and finally the watershed algorithm is used. With this method, image pre-processing is not required, which leads to time savings. We obtained the following results that show that our technique is effective, efficient and fast: Precision of 98.47 % and Recall of 98.23 %, a degree of precision (F-Measurement) of 98.34 % and an Accuracy of 96.75 %.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we propose an efficient approach to image segmentation for multispectral images of unstained blood films and automatic counting of erythrocytes. Our method takes advantage of Beer–Lambert’s law by using, first, a statistical standardisation equation applied to transmittance images, followed by the local adaptive threshold to detect the blood cells and hysteresis contour closing to obtain the complete blood cell boundaries, and finally the watershed algorithm is used. With this method, image pre-processing is not required, which leads to time savings. We obtained the following results that show that our technique is effective, efficient and fast: Precision of 98.47 % and Recall of 98.23 %, a degree of precision (F-Measurement) of 98.34 % and an Accuracy of 96.75 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动细胞计数的多光谱无标记血涂片图像中红细胞的检测与分割
在这项工作中,我们提出了一种有效的方法来分割未染色血液膜的多光谱图像和红细胞的自动计数。我们的方法利用了比尔-兰伯特定律,首先使用应用于透射图像的统计标准化方程,然后使用局部自适应阈值来检测血细胞,并通过闭合磁滞轮廓来获得完整的血细胞边界,最后使用分水岭算法。使用这种方法,不需要图像预处理,从而节省了时间。我们获得了以下结果,表明我们的技术是有效、高效和快速的:精密度为98.47%,召回率为98.23%,精密度(F-Measurement)为98.34%,准确度为96.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
期刊最新文献
Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images Comparison of 2D and 3D semantic segmentation in urban areas using fused hyperspectral and lidar data Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1