Recurrent neural networks with controlled elements in restoring frame flows

V. Osipov, Viktor Nikiforov
{"title":"Recurrent neural networks with controlled elements in restoring frame flows","authors":"V. Osipov, Viktor Nikiforov","doi":"10.31799/1684-8853-2019-5-10-17","DOIUrl":null,"url":null,"abstract":"Introduction: Various interfering influences raise pressing problems of promptly restoring the flow of distorted frames,remembering about the background and dynamics of the event measurement laws. The traditional methods of recovering flows ofdistorted frames do not fully take into account the peculiarities of this process. Purpose: Exploring the possibilities of recurrent neuralnetworks with controlled elements for restoring frame flows. Results: It is proposed to evaluate the potential of a recurrent neuralnetwork with controlled elements by the number of successful options for restoring a distorted sequence of frames. Evaluation of thecapabilities of such neural networks according to the introduced indicator showed their strong dependence on the type of networkstructure and settings. Recurrent neural networks with spiral structures of layers work better. As the number of the turns in the helixgrows, the network capabilities also grow. Enhancing the capacity of a network to restore distorted frame flows is feasible if we replaceunipolar functions of the synapse weights by bipolar ones. A significant increase in the capabilities of the neural networks under studyis possible by controlling the neuron excitation thresholds in order to provide sequential rather than parallel elimination of variouserrors. In contrast to the conventional neural networks, recurrent neural networks with controlled elements can adapt to changes in№ 5, 2019 ИНФОРМАЦИОННОУПРАВЛЯЮЩИЕ СИСТЕМЫ 17ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕthe laws inherent in frame flows, and implement controlled associative signal processing. Experiments have shown that these neuralnetworks can use associative connections for taking into account deep current experience in signal processing, and be successfully usedfor restoring distorted frame flows.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2019-5-10-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Introduction: Various interfering influences raise pressing problems of promptly restoring the flow of distorted frames,remembering about the background and dynamics of the event measurement laws. The traditional methods of recovering flows ofdistorted frames do not fully take into account the peculiarities of this process. Purpose: Exploring the possibilities of recurrent neuralnetworks with controlled elements for restoring frame flows. Results: It is proposed to evaluate the potential of a recurrent neuralnetwork with controlled elements by the number of successful options for restoring a distorted sequence of frames. Evaluation of thecapabilities of such neural networks according to the introduced indicator showed their strong dependence on the type of networkstructure and settings. Recurrent neural networks with spiral structures of layers work better. As the number of the turns in the helixgrows, the network capabilities also grow. Enhancing the capacity of a network to restore distorted frame flows is feasible if we replaceunipolar functions of the synapse weights by bipolar ones. A significant increase in the capabilities of the neural networks under studyis possible by controlling the neuron excitation thresholds in order to provide sequential rather than parallel elimination of variouserrors. In contrast to the conventional neural networks, recurrent neural networks with controlled elements can adapt to changes in№ 5, 2019 ИНФОРМАЦИОННОУПРАВЛЯЮЩИЕ СИСТЕМЫ 17ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕthe laws inherent in frame flows, and implement controlled associative signal processing. Experiments have shown that these neuralnetworks can use associative connections for taking into account deep current experience in signal processing, and be successfully usedfor restoring distorted frame flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有控制元素的递归神经网络在帧流恢复中的应用
各种干扰的影响提出了快速恢复畸变帧流、记住事件测量规律的背景和动态等紧迫问题。传统的恢复扭曲帧流的方法没有充分考虑到这一过程的特点。目的:探索具有控制元素的递归神经网络用于恢复帧流的可能性。结果:建议通过成功恢复扭曲帧序列的选项数量来评估具有控制元素的循环神经网络的潜力。根据引入的指标对这类神经网络的能力进行评价,表明它们对网络结构类型和设置有很强的依赖性。具有螺旋层结构的递归神经网络效果更好。随着螺旋匝数的增加,网络的能力也在增长。用双极函数代替突触权值的单极函数,增强网络恢复扭曲帧流的能力是可行的。通过控制神经元的激励阈值,以提供顺序而不是并行消除各种误差,可以显著提高所研究的神经网络的能力。与传统神经网络相比,具有受控元素的递归神经网络可以适应帧流中固有的№5,2019 ИНФОРМАЦИОННОУПРАВЛЯЮЩИЕ СИСТЕМЫ 17ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕthe规律的变化,并实现受控的关联信号处理。实验表明,这些神经网络可以使用联想连接来考虑信号处理中的深层电流经验,并成功地用于恢复扭曲的帧流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
期刊最新文献
Modeling of bumping routes in the RSK algorithm and analysis of their approach to limit shapes Continuous control algorithms for conveyer belt routing based on multi-agent deep reinforcement learning Fully integrated optical sensor system with intensity interrogation Decoding of linear codes for single error bursts correction based on the determination of certain events Backend Bug Finder — a platform for effective compiler fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1