Effect of γ-Irradiation on the Semitransparent Gray Color Obsidian in the 5 to 500 kGy Range

IF 0.5 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Journal of Contemporary Physics (Armenian Academy of Sciences) Pub Date : 2023-07-14 DOI:10.1134/S1068337223020020
N. R. Aghamalyan, I. A. Ghambaryan, E. A. Kafadaryan, M. N. Nersisyan, H. T. Gyulasaryan, G. N. Chilingaryan
{"title":"Effect of γ-Irradiation on the Semitransparent Gray Color Obsidian in the 5 to 500 kGy Range","authors":"N. R. Aghamalyan,&nbsp;I. A. Ghambaryan,&nbsp;E. A. Kafadaryan,&nbsp;M. N. Nersisyan,&nbsp;H. T. Gyulasaryan,&nbsp;G. N. Chilingaryan","doi":"10.1134/S1068337223020020","DOIUrl":null,"url":null,"abstract":"<p>Semitransparent gray color obsidian samples (bulk and powder) were irradiated at room temperature by Co<sup>60</sup> radiation source with the γ-photon average energy of 1.25 MeV and different doses from 5 to ~500 kGy. It is known that γ-irradiation influences the optical properties of glass materials depending on the composition as well as on the presence of defects in the glass matrix. Analysis of obsidian samples was carried out by absorption and reflection spectroscopy in the UV, visible, and IR ranges, as well as by EPR measurements for characterization of semitransparent gray color obsidian depending on the γ-irradiation of different doses. The difference in transmittance spectra between the pristine sample and those irradiated with different doses made it possible to distinguish three absorption bands at 368, 386, and 442 nm, which are responsible for Fe<sup>3+</sup> ions in different environments. The content of hydroxyl OH groups, determined from the absorption in the band at ~4500 cm<sup>–1</sup>, does not change in the range of used doses. The EPR measurements showed three signals with <i>g</i>-factors of ~6.0, ~4.2, and ~2.0 characteristic for Fe<sup>3+</sup> ions, the intensities of which increase with increasing irradiation doses. Obsidian turned out to be resistant to the formation of NBOHC paramagnetic defects in the region of the indicated doses of γ-irradiation.</p>","PeriodicalId":623,"journal":{"name":"Journal of Contemporary Physics (Armenian Academy of Sciences)","volume":"58 2","pages":"172 - 178"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Physics (Armenian Academy of Sciences)","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1068337223020020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semitransparent gray color obsidian samples (bulk and powder) were irradiated at room temperature by Co60 radiation source with the γ-photon average energy of 1.25 MeV and different doses from 5 to ~500 kGy. It is known that γ-irradiation influences the optical properties of glass materials depending on the composition as well as on the presence of defects in the glass matrix. Analysis of obsidian samples was carried out by absorption and reflection spectroscopy in the UV, visible, and IR ranges, as well as by EPR measurements for characterization of semitransparent gray color obsidian depending on the γ-irradiation of different doses. The difference in transmittance spectra between the pristine sample and those irradiated with different doses made it possible to distinguish three absorption bands at 368, 386, and 442 nm, which are responsible for Fe3+ ions in different environments. The content of hydroxyl OH groups, determined from the absorption in the band at ~4500 cm–1, does not change in the range of used doses. The EPR measurements showed three signals with g-factors of ~6.0, ~4.2, and ~2.0 characteristic for Fe3+ ions, the intensities of which increase with increasing irradiation doses. Obsidian turned out to be resistant to the formation of NBOHC paramagnetic defects in the region of the indicated doses of γ-irradiation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
γ-辐照对5 ~ 500 kGy范围内半透明灰色黑曜石的影响
采用Co60辐射源,以γ光子平均能量为1.25 MeV,剂量为5 ~ ~500 kGy,在室温下辐照半透明灰色黑曜石样品(块状和粉状)。众所周知,γ辐照会影响玻璃材料的光学性质,这取决于玻璃材料的成分以及玻璃基体中是否存在缺陷。对黑曜石样品进行了紫外、可见光和红外光谱的吸收和反射光谱分析,并通过EPR测量对不同剂量γ辐照下的半透明灰色黑曜石进行了表征。原始样品与不同剂量辐照样品的透射光谱差异使得可以区分出368、386和442 nm三个吸收带,这三个吸收带是不同环境下Fe3+离子的吸收带。根据~4500 cm-1波段的吸收测定羟基OH的含量,在使用剂量范围内没有变化。EPR测量结果显示,Fe3+离子的特征g因子为~6.0、~4.2和~2.0,其强度随辐照剂量的增加而增加。结果表明,在指定的γ辐照剂量范围内,黑曜石可以抵抗NBOHC顺磁缺陷的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
66.70%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Journal of Contemporary Physics (Armenian Academy of Sciences) is a journal that covers all fields of modern physics. It publishes significant contributions in such areas of theoretical and applied science as interaction of elementary particles at superhigh energies, elementary particle physics, charged particle interactions with matter, physics of semiconductors and semiconductor devices, physics of condensed matter, radiophysics and radioelectronics, optics and quantum electronics, quantum size effects, nanophysics, sensorics, and superconductivity.
期刊最新文献
Waveguide-Lens Transitions for Terahertz Range Thermodynamic Parameters of Binding of Small Molecules to DNA Irradiated by Low-Intensity Millimeter Electromagnetic Waves X-Ray Diffraction by Superlattice with Overlapping Stacking Faults Correlation Function for Heteropolymers Near the Melting Temperature Features of Spherical X-Ray Wave Diffraction by a Low Angle Twist Boundary Perpendicular to the Crystal Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1