Merouan Belkasmi, K. Bouziane, M. Akherraz, Mensah K. Anaty, Mohamed El ouahabi, T. Sadiki, M. Faqir
{"title":"Outdoor Performance Tests of a HCPV Prototype","authors":"Merouan Belkasmi, K. Bouziane, M. Akherraz, Mensah K. Anaty, Mohamed El ouahabi, T. Sadiki, M. Faqir","doi":"10.15866/IRECON.V6I4.15939","DOIUrl":null,"url":null,"abstract":"Outdoor performance of a high concentrating photovoltaic (HCPV) system developed in this work has been investigated. In particular, the effect of three parameters namely wind speed, DNI and ambient temperature on the HCPV performance is explored. The tracking accuracy of the HCPV system is a crucial factor in the energy production related directly to the performance and closely depends on the acceptance angle of the HCPV module and the sun tracking control upon the abovementioned parameters. The acceptance angle of the HCPV module mounted on our HCPV system has been determined to be around 1.2°, deduced by studying the variation of the maximum pointing error from the solar source before the power drop. It is worth to mention that the HCPV system produces more than 94% of the excepted output power for a tracking error less than 1°. The tracking error in the range wind speed 6-8 m/s was found to reach an utmost deviation of 0.12° leading to 1% of power loss. Indeed, the outdoor tests of our HCPV prototype revealed variation of the maximum output power under different atmospheric conditions such as the ambient temperature and the direct normal irradiance (DNI). The maximum efficiency of the HCPV prototype has been determined around 23% according to a large range of DNI 0-850 W/m2. Taking into account the variation of the performance of our HCPV system versus the three parameters, The ASTM E2527 model has been implemented and its four coefficients have been determined to find the best accuracy of relationship between the three atmospheric parameters and maximum output power, simultaneously.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IRECON.V6I4.15939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Outdoor performance of a high concentrating photovoltaic (HCPV) system developed in this work has been investigated. In particular, the effect of three parameters namely wind speed, DNI and ambient temperature on the HCPV performance is explored. The tracking accuracy of the HCPV system is a crucial factor in the energy production related directly to the performance and closely depends on the acceptance angle of the HCPV module and the sun tracking control upon the abovementioned parameters. The acceptance angle of the HCPV module mounted on our HCPV system has been determined to be around 1.2°, deduced by studying the variation of the maximum pointing error from the solar source before the power drop. It is worth to mention that the HCPV system produces more than 94% of the excepted output power for a tracking error less than 1°. The tracking error in the range wind speed 6-8 m/s was found to reach an utmost deviation of 0.12° leading to 1% of power loss. Indeed, the outdoor tests of our HCPV prototype revealed variation of the maximum output power under different atmospheric conditions such as the ambient temperature and the direct normal irradiance (DNI). The maximum efficiency of the HCPV prototype has been determined around 23% according to a large range of DNI 0-850 W/m2. Taking into account the variation of the performance of our HCPV system versus the three parameters, The ASTM E2527 model has been implemented and its four coefficients have been determined to find the best accuracy of relationship between the three atmospheric parameters and maximum output power, simultaneously.
期刊介绍:
The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.